356
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Toxicity evaluation and microbiota response of the lined sole Achirus lineatus (Chordata: Achiridae) exposed to the light petroleum water-accommodated fraction (WAF)

, ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 313-329 | Received 08 Oct 2019, Accepted 17 Apr 2020, Published online: 07 May 2020

References

  • Aas, E., J. Beyer, and A. Goksøryr. 1998. PAH in fish bile detected by fixed wavelength fluorescence. Mar. Environ. Res. 46:225–28. doi:10.1016/S0141-1136(97)00034-2.
  • Aas, E., T. Baussant, L. Balk, B. Liewenborg, and O. K. Andersen. 2000. PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: A laboratory experiment with Atlantic cod. Aquat. Toxicol. 51:241–58. doi:10.1016/S0166-445X(00)00108-9.
  • Ackleh, A., G. Ioup, J. Ioup, B. Ma, J. Newcomb, N. Pal, N. Sidorovskaia, and C. Tiemann. 2012. Assessing the Deepwater Horizon oil spill impact on marine mammal population through acoustics: Endangered sperm whales. J. Acoust. Soc. Am. 131:2306–14. doi:10.1121/1.3682042.
  • Adamovsky, O., A. N. Buerger, A. M. Wormington, N. Ector, R. J. Griffitt, J. H. Bisesi, and C. J. Martyniuk. 2018. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environ. Toxicol. Chem. 37:2758–75. doi:10.1002/etc.4249.
  • Adeyemo, O. K., K. J. Kroll, and N. D. Denslow. 2015. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. Aquat. Toxicol. 168:60–71. doi:10.1016/j.aquatox.2015.09.012.
  • Agamy, E. 2012. Histopathological changes in the livers of rabbit fish (Siganus canaliculatus) following exposure to crude oil and dispersed oil. Toxicol. Pathol. 40:1128–40. doi:10.1177/0192623312448936.
  • Agius, C., and R. J. Roberts. 2003. Melanomacrophage centres and their role in fish pathology. J. Fish Dis. 26:499–509. doi:10.1046/j.1365-2761.2003.00485.x.
  • Ali, A. O., C. Hohn, P. J. Allen, L. Ford, M. B. Dail, S. Pruett, and L. Petrie-Hanson. 2014. The effects of oil exposure on peripheral blood leukocytes and splenic melanomacrophage centers of Gulf of Mexico fishes. Mar. Pollut. Bull. 79:87–93. doi:10.1016/j.marpolbul.2013.12.036.
  • Allan, S. E., B. W. Smith, and K. A. Anderson. 2012. Impact of the Deepwater Horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ. Sci. Technol. 46:2033–39. doi:10.1021/es202942q.
  • Al-Mutairi, N., A. Bufarsan, and F. Al-Rukaibi. 2008. Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere 74:142–48. doi:10.1016/j.chemosphere.2008.08.020.
  • Arellano, J. M., V. Storch, and C. Sarasquete. 1999. Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicol. Environ. Saf. 44:62–72. doi:10.1006/eesa.1999.1801.
  • Ariese, F., S. J. Kok, M. Verkaik, C. Gooijer, N. H. Velthorst, and J. W. Hofstraat. 1993. Synchronous fluorescence spectrometry of fish bile: A rapid screening method for the biomonitoring of PAH exposure. Aquat. Toxicol. 26:273–86. doi:10.1016/0166-445X(93)90034-X.
  • Baali, A., U. Kammann, R. Hanel, I. El Qoraychy, and A. Yahyaoui. 2016. Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in three species of fish from Morocco. Environ. Sci. Eur. 28:25. doi:10.1186/s12302-016-0093-6.
  • Bagi, A., E. S. Riiser, H. S. Molland, B. Star, T. Haverkamp, M. O. Sydnes, and D. M. Pampanin. 2018. Gastrointestinal microbial community changes in Atlantic cod (Gadus morhua) exposed to crude oil. BMC Microbiol. 18:25. doi:10.1186/s12866-018-1171-2.
  • Barron, M. G., and L. Ka’aihue. 2003. Critical evaluation of CROSERF test methods for oil dispersant toxicity testing under subarctic conditions. Mar. Pollut. Bull. 46:1191–99. doi:10.1016/S0025-326X(03)00125-5.
  • Bellas, J., L. Saco-Álvarez, Ó. Nieto, J. M. Bayona, J. Albaigés, and R. Beiras. 2013. Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays. Chemosphere 90:1103–08. doi:10.1016/j.chemosphere.2012.09.015.
  • Blahová, J., L. Plhalová, M. Hostovský, L. Divišová, R. Dobšíková, I. Mikulíková, S. Štěpánová, and Z. Svobodová. 2013. Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem. Toxicol. 61:82–85. doi:10.1016/j.fct.2013.02.041.
  • Blüthgen, N., S. Zucchi, and K. Fent. 2012. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 263:184–94. doi:10.1016/j.taap.2012.06.008.
  • Bolyen, E., J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, G. A. Al-Ghalith, Y. Bai, and J. G. Caporaso. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37:852–57. doi:10.1038/s41587-019-0209-9.
  • Bonucci Moreira, C., R. Vieira Rodrigues, L. A. Romano, E. Pereira Gusmão, B. Hartwig Seyffert, L. A. Sampaio, and K. C. Miranda-Filho. 2014. Genotoxicity and histological alterations in grey mullet Mugilliza exposed to petroleum water-soluble fraction (PWSF). Environ. Sci. Pollut. Res. 21:5565–74. doi:10.1007/s11356-013-2440-0.
  • Borrelli, L., S. Aceto, C. Agnisola, S. De Paolo, L. Dipineto, R. M. Stilling, T. G. Dinan, J. F. Cryan, L. F. Menna, and A. Fioretti. 2016. Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep 6:1–9. doi:10.1038/srep30046.
  • Brand, D., R. Fink, W. Bengeyfield, I. Birtwell, and C. Mcallister. 2001. Salt water-acclimated pink salmon fry (Oncorrhynchus gorbuscha) develop stress-related visceral lesions after 10-day exposure to sublethal concentrations of the water-soluble fraction of North Slope crude oil. Toxicol. Pathol. 29:574–84. doi:10.1080/019262301317226384.
  • Brewton, R. A., R. Fulford, and R. J. Griffitt. 2013. Gene expression and growth as indicators of effects of the BP Deepwater Horizon oil spill on spotted seatrout (Cynoscion nebulosus). J. Toxicol. Environ. Health A 76:1198–209. doi:10.1080/15287394.2013.848394.
  • Brown-Peterson, N. J., M. Krasnec, R. Takeshita, C. N. Ryan, K. J. Griffitt, C. Lay, G. D. Mayer, K. M. Bayha, W. E. Hawkins, I. Lipton. 2015. A multiple endpoint analysis of the effects of chronic exposure to sediment contaminated with Deepwater Horizon oil on juvenile Southern flounder and their associated microbiomes. Aquat. Toxicol. 165:197–209. http://linkinghub.elsevier.com/retrieve/pii/S0166445X15001733.
  • Brown-Peterson, N. J., M. O. Krasnec, C. R. Lay, J. M. Morris, and R. J. Griffitt. 2017. Responses of juvenile Southern flounder exposed to Deepwater Horizon oil-contaminated sediments. Environ. Toxicol. Chem. 36:1067–76. doi:10.1002/etc.3629.
  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581–83. doi:10.1038/nmeth.3869.
  • Callahan, B. J., P. J. McMurdie, and S. P. Holmes. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. Isme J. 11:2639. doi:10.1038/ismej.2017.119.
  • Camargo, M. M. P., and C. B. R. Martinez. 2007. Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotrop. Ichthyol. 5:327–36. doi:10.1590/S1679-62252007000300013.
  • Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–91. doi:10.2307/2531532.
  • Cornejo-Granados, F., A. A. Lopez-Zavala, L. Gallardo-Becerra, A. Mendoza-Vargas, F. Sánchez, R. Vichido, L. G. Brieba, M. T. Viana, R. R. Sotelo-Mundo, and A. Ochoa-Leyva. 2017. Microbiome of Pacific whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. Sci. Rep. 7:1–15. doi:10.1038/s41598-017-11805-w.
  • Corrales, J., X. Fang, C. Thornton, W. Mei, W. B. Barbazuk, M. Duke, B. E. Scheffler, and K. L. Willett. 2014. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp. Biochem. Physiol. C 163:37–46.
  • Crone, T. J., and M. Tolstoy. 2010. Magnitude of the 2010 Gulf of Mexico oil leak. Science 330:634. doi:10.1126/science.1195840.
  • Das, N., and P. Chandran. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011:941810. doi:10.4061/2011/941810.
  • de Soysa, T. Y., A. Ulrich, T. Friedrich, D. Pite, S. L. Compton, D. Ok, R. L. Bernardos, G. B. Downes, S. Hsieh, R. Stein, et al. 2012. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol. 10:40. doi:10.1186/1741-7007-10-40.
  • Dubansky, B., A. Whitehead, J. T. Miller, C. D. Rice, and F. Galvez. 2013. Multitissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulus grandis). Environ. Sci. Technol. 47:5074–82. doi:10.1021/es400458p.
  • García-Tavera, J. L., D. Valdés-Lozano, I. Poblete-Naredo, A. Albores-Medina, and O. Zapata-Pérez. 2013. Bile benzo[a]pyrene concentration and hepatic CYP1A induction in hypoxic adult tilapia (Oreochromis niloticus). Chemosphere 92:16–23. doi:10.1016/j.chemosphere.2013.03.034.
  • Giari, L., M. Manera, E. Simoni, and B. S. Dezfuli. 2007. Cellular alterations in different organs of European sea bass Dicentrachus labrax (L.) exposed to cadmium. Chemosphere 67:1171–81. doi:10.1016/j.chemosphere.2006.10.061.
  • Holmes, E., J. V. Li, T. Athanasiou, H. Ashrafian, and J. K. Nicholson. 2011. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 19:349–59. doi:10.1016/j.tim.2011.05.006.
  • Humason, G. L. 1962. Animal Tissue Techniques. San Francisco, USA: W.H. Freeman & Company.
  • Jiménez-Tenorio, N., M. J. Salamanca, E. García-Luque, M. L. González de Canales, and T. A. DelValls. 2008. Chronic bioassay in benthic fish for the assessment of the quality of sediments in different areas of the coast of Spain impacted by acute and chronic oil spills. Environ. Toxicol. 23:634–42. doi:10.1002/tox.20420.
  • Jonsson, G., R. K. Bechmann, S. D. Bamber, and T. Baussant. 2004. Bioconcentration, biotransformation, and elimination of polycyclic aromatic hydrocarbons in Sheepshead minnows (Cyprinodon variegatus) exposed to contaminated seawater. Environ. Toxicol. Chem. 23:1538–48. doi:10.1897/03-173.
  • Kammann, U. 2007. PAH metabolites in bile fluids of dab (Limanda limanda) and flounder (Platichthys flesus) - Spatial distribution and seasonal changes. Environ. Sci. Pollut. Res. 14:102–08. doi:10.1065/espr2006.05.308.
  • Keith, L. H. 2014. The source of U.S. EPA’s sixteen PAH priority pollutants. Polycycl. Aromat. Compd. 35:147–60. doi:10.1080/10406638.2014.892886.
  • Khan, R. A. 2003. Health of flatfish from localities in Placentia Bay, Newfoundland, contaminated with petroleum and PCBs. Arch. Environ. Contam. Toxicol. 44:485–92. doi:10.1007/s00244-002-2063-9.
  • Khan, R. A., and J. F. Payne. 2005. Influence of a crude oil dispersant, Corexit 9527, and dispersed oil on capelin (Mallotus villosus), Atlantic cod (Gadus morhua), longhorn sculpin (Myoxocephalus octodecemspinosus), and cunner (Tautogolabrus adspersus). Bull. Environ. Contam. Toxicol. 75:50–56. doi:10.1007/s00128-005-0717-9.
  • Kim, B. R., J. Shin, R. B. Guevarra, J. H. Lee, D. W. Kim, K. H. Seol, J.-H. Lee, H. B. Kim, and R. E. Isaacson. 2017. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 27:2089–93. doi:10.4014/jmb.1709.09027.
  • Kinross, J. M., A. W. Darzi, and J. K. Nicholson. 2011. Gut microbiome-host interactions in health and disease. Genome Med. 3:14. doi:10.1186/gm228.
  • Klindworth, A., E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, and F. O. Glöckner. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. doi:10.1093/nar/gks808.
  • Klinger, D. H., J. J. Dale, B. E. Machado, J. P. Incardona, C. J. Farwell, and B. A. Block. 2015. Exposure to Deepwater Horizon weathered crude oil increases routine metabolic demand in chub mackerel, Scomber japonicus. Mar. Pollut. Bull. 98:259–66. doi:10.1016/j.marpolbul.2015.06.039.
  • Krahn, M. M., D. G. Burrows, W. D. MacLeod, and D. C. Malins. 1987. Determination of individual metabolites of aromatic compounds in hydrolyzed bile of English sole (Parophrys vetulus) from polluted sites in Puget Sound, Washington. Arch. Environ. Contam. Toxicol. 16:511–22. doi:10.1007/BF01055807.
  • Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29:115–29. doi:10.1007/BF02289694.
  • Kvenvolden, K. A., and C. K. Cooper. 2003. Natural seepage of crude oil into the marine environment. Geo-Mar. Lett. 23:140–46.
  • Laffon, B., E. Pásaro, and V. Valdiglesias. 2016. Effects of exposure to oil spills on human health: Updated review. J. Toxicol. Environ. Health B 19:105–28. doi:10.1080/10937404.2016.1168730.
  • Lawrence, K. G., A. P. Keil, S. Garantziotis, D. M. Umbach, P. A. Stewart, M. R. Stenzel, J. A. McGrath, W. B. Jackson, R. K. Kwok, M. D. Curry, et al. 2020. Lung function in oil spill responders 4-6 years after the Deepwater Horizon disaster. J. Toxicol. Environ. Health A 83:233–48. doi:10.1080/15287394.2020.1745111.
  • Leadly, T. A., L. D. Arcand-Hoy, G. D. Haffner, and C. D. Metcalfe. 1999. Fluorescent aromatic hydrocarbons in bile as a biomarker of exposure of brown bullheads (Ameiurus nebulosus) to contaminated sediments. Environ. Toxicol. Chem. 18:750–55. doi:10.1002/etc.5620180422.
  • Lee, K. W., W. J. Shim, U. H. Yim, and J. H. Kang. 2013. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus. Chemosphere 92:1161–68. doi:10.1016/j.chemosphere.2013.01.080.
  • Legendre, P., and M. De Cáceres. 2013. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16:951–63. doi:10.1111/ele.12141.
  • Lin, E. L. C., S. M. Cormier, and R. N. Racine. 1994. Synchronous fluorometric measurement of metabolites of polycyclic aromatic hydrocarbons in the bile of brown bullhead. Environ. Toxicol. Chem. 13:707–15. doi:10.1002/etc.5620130504.
  • Lin, E. L. C., S. M. Cormier, R. N. Racine, and J. A. Torsella. 1996. Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: Comparison with HPLC-fluorescent detection. Ecotoxicol. Environ. Saf. 35:16–23. doi:10.1006/eesa.1996.0077.
  • Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordinus, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Impensis Direct, 824. Holmiae:Laurentii Salvii.
  • Love, M., S. Anders, and W. Huber. 2014. Differential analysis of count data - the DESeq2 package. Genome Biol. 15:550. doi:10.1186/s13059-014-0550-8.
  • Lubecki, L., and G. Kowalewska. 2010. Distribution and Fate of polycyclic aromatic hydrocarbons (PAHs) in recent sediments from the Gulf of Gdańsk (SE Baltic). Oceanologia 52:669–703. doi:10.5697/oc.52-4.669.
  • Luna, L. G. 1968. Manual of histologic staining methods of the armed forces institute of pathology. New York, USA: McGraw-Hill.
  • Lyons, B. P., G. D. Stentiford, M. Green, J. Bignell, K. Bateman, S. W. Feist, F. Goodsir, W. J. Reynolds, and J. E. Thain. 2004. DNA adduct analysis and histopathological biomarkers in European flounder (Platichthys flesus) sampled from UK estuaries. Mutat. Res. 552:177–86. doi:10.1016/j.mrfmmm.2004.06.016.
  • McMurdie, P. J., and S. Holmes. 2013. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PeerJ. 8:e61217.
  • McNutt, M. K., R. Camilli, T. J. Crone, G. D. Guthrie, P. A. Hsieh, T. B. Ryerson, O. Savas, and F. Shaffer. 2012. Review of flow rate estimates of the Deepwater Horizon oil spill. Proc. Nat. Acad. Sci. USA 109:20260–67.
  • Murawski, S. A., W. T. Hogarth, E. B. Peebles, and L. Barbeiri. 2014. Prevalence of external skin lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of of Mexico fishes, post-Deepwater Horizon. Trans. Am. Fish. Soc. 143:37–41. doi:10.1080/00028487.2014.911205.
  • Narrowe, A. B., M. Albuthi-Lantz, E. P. Smith, K. J. Bower, T. M. Roane, A. M. Vajda, and C. S. Miller. 2015. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure. Microbiome 3 (1):1–18. doi:10.1186/s40168-015-0069-6.
  • Nogueira, P., M. Pacheco, M. L. Pereira, S. Mendo, and R. Jeanette. 2010. Novel potential molecular biomarkers of aquatic contamination in Dicentrarchus labrax and Liza aurata. In Interdisciplinary studies on environmental chemistry, ed. N. Hanamura, S. Suzuki, S. Mendo, C. M. Barroso, H. Iwata, and S. Tanabe, 127–38. Tokyo: Terrapub.
  • Ohnishi, S., and S. Kawanishi. 2002. Double base lesions of DNA by a metabolite of carcinogenic benzo[a]pyrene. Biochem. Biophys. Res. Commun. 290:778–82. doi:10.1006/bbrc.2001.6249.
  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R .B. O'Hara, G .L. Simpson, P. Solymos. 2019. Vegan: Community ecology package. R Package Version 2:5.
  • Pampanin, D. M., S. J. Brooks, B. E. Grøsvik, J. Le Goff, S. Meier, and M. O. Sydnes. 2017. DNA adducts in marine fish as biological marker of genotoxicity in environmental monitoring: The way forward. Mar. Environ. Res. 124:49–62. doi:10.1016/j.marenvres.2017.01.002.
  • Peebua, P., M. Kruatrachue, P. Pokethitiyook, and P. Kosiyachinda. 2006. Histological effects of contaminated sediments in Mae Klong river tributaries, Thailand, on Nile tilapia, Oreochromis niloticus. ScienceAsia 32:143–50. doi:10.2306/scienceasia1513-1874.2006.32.143.
  • Pelletier, E., D. Delille, and B. Delille. 2004. Crude oil bioremediation in sub-Antarctic intertidal sediments: Chemistry and toxicity of oiled residues. Mar. Environ. Res. 57:311–27. doi:10.1016/j.marenvres.2003.07.001.
  • Pérez-Cobas, A. E., M. J. Gosalbes, A. Friedrichs, H. Knecht, A. Artacho, K. Eismann, W. Otto, D. Rojo, R. Bargiela, M. von Bergen. 2013. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut Microbiota 62:1591–601. doi:10.1136/gutjnl-2012-303184.
  • Perrichon, P., K. Le Menach, F. Akcha, J. Cachot, H. Budzinski, and P. Bustamante. 2016. Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach. Sci. Total Environ. 568:952–66. doi:10.1016/j.scitotenv.2016.04.186.
  • Peterson, C. H., S. D. Rice, J. W. Short, D. Esler, J. L. Bodkin, B. E. Ballachey, and D. B. Irons. 2003. Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–86. doi:10.1126/science.1084282.
  • Poleksic, V., and V. Mitrovic-Tutundzic. 1994. Fish gills as a monitor of sublethal and chronic effects of pollution. In Sublethal and Chronic Effects of Pollutants on Freshwater Fish, ed. R. Müller, R. Lloyd, and U. K. Cambridge, 339–52. Cambridge: University Press.
  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Ramírez, C., J. Coronado, A. Silva, and J. Romero. 2018. Cetobacterium is a major component of the microbiome of giant Amazonian fish (Arapaima gigas) in Ecuador. Animals 8:189. doi:10.3390/ani8110189.
  • Ramírez, C., and J. Romero. 2017. The microbiome of Seriola lalandi of wild and aquaculture origin reveals differences in composition and potential function. Front. Microbiol. 8:1–10. doi:10.3389/fmicb.2017.01844.
  • Rognes, T., T. Flouri, B. Nichols, C. Quince, and F. Mahé. 2016. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 4:e2584. doi:10.7717/peerj.2584.
  • Rosenfeld, C. S. 2017. Gut dysbiosis in animals due to environmental chemical exposures. Front. Cell Infect. Microbiol. 7:396. doi:10.3389/fcimb.2017.00396.
  • Saco-Álvarez, L., J. Bellas, Ó. Nieto, J. M. Bayona, J. Albaigés, and R. Beiras. 2008. Toxicity and phototoxicity of water-accommodated fraction obtained from Prestige fuel oil and Marine fuel oil evaluated by marine bioassays. Sci. Total Environ. 394:275–82. doi:10.1016/j.scitotenv.2008.01.045.
  • Sakuragui, M. M., J. R. Sanches, and M. N. Fernandes. 2003. Gill chloride cell proliferation and respiratory responses to hypoxia of the Neotropical erythrinid fish Hoplias malabaricus. J. Comp. Physiol. B 173:309–17. doi:10.1007/s00360-003-0337-9.
  • Salamat, N., and M. Zarie. 2016. Fish histopathology as a tool for use in marine environment monitoring: A review. Comp. Clin. Path. 25:1273–78. doi:10.1007/s00580-014-2037-0.
  • Schwaiger, J., R. Wanke, S. Adam, M. Pawert, W. Honnen, and R. Triebskorn. 1997. The use of histopathological indicators to evaluate contaminant-related stress in fish. J. Aquat. Ecosyst. Stress Recovery 6:75–86. doi:10.1023/A:1008212000208.
  • Shekhar, S., A. Sundaramanickam, and T. Balasubramanian. 2015. Biosurfactant producing microbes and their potential applications: A review. Crit. Rev. Environ. Sci. Technol. 45:1522–54. doi:10.1080/10643389.2014.955631.
  • Silva, A. G., and C. B. R. Martinez. 2007. Morphological changes in the kidney of a fish living in an urban stream. Environ. Toxicol. Pharmacol. 23:185–92. doi:10.1016/j.etap.2006.08.009.
  • Simonato, J. D., C. L. B. Guedes, and C. B. R. Martinez. 2008. Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicol. Environ. Saf. 69:112–20. doi:10.1016/j.ecoenv.2007.01.012.
  • Simpson, S. L., O. Campana, and K. T. Ho. 2017. Sediment toxicity testing. In Marine ecotoxicology, ed. J. Blasco, P. M. Chapman, O. Campana, and M. Hampel, 199–237. Orlando, FL: Academic Press.
  • Singer, M. M., D. Aurand, G. E. Bragin, J. R. Clark, G. M. Coelho, M. L. Sowby, and R. S. Tjeerdema. 2000. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Pollut. Bull. 40:1007–16. doi:10.1016/S0025-326X(00)00045-X.
  • Singer, M. M., D. V. Aurand, G. M. Coelho, G. E. Bragin, J. R. Clark, M. Sowby, and R. S. Tjeerdema. 2001. Making, measuring, and using water-accommodated fractions of petroleum for toxicity testing. In Proceedings of the 2001 International Oil Spill Conference, 1269–1274. Washington, D.C: American Petroleum Institute.
  • Sokal, R. R., and F. J. Rohlf. 2012. Biometry. 4th ed. New York, USA: W.H. Freeman and Company.
  • Solangi, M., and R. M. Overstreet. 1982. Histopathological changes in two estuarine fishes, Menidia beryllina (Cope) and Trinectes maculatus (Bloch and Schneider), exposed to crude oil and its water soluble fractions. J. Fish Dis. 5:13–35. doi:10.1111/j.1365-2761.1982.tb00453.x.
  • Steinel, N. C., and D. I. Bolnick. 2017. Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front. Immunol. 8:827. doi:10.3389/fimmu.2017.00827.
  • Stentiford, G. D., M. Longshaw, B. P. Lyons, G. Jones, M. Green, and S. W. Feist. 2003. Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Mar. Environ. Res. 55:137–59. doi:10.1016/S0141-1136(02)00212-X.
  • Stevanovic, M., S. Gasic, M. Pipal, L. Blahova, D. Brkic, N. Neskovic, and K. Hilscherova. 2017. Toxicity of clomazone and its formulations to zebrafish Embryos (Danio rerio). Aquat. Toxicol. 188:54–63. doi:10.1016/j.aquatox.2017.04.007.
  • Teramoto, M., M. Ohuchi, A. Hatmanti, Y. Darmayati, Y. Widyastuti, S. Harayama, and Y. Fukunaga. 2011. Oleibacter Marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int. J. Syst. Evol. Microbiol. 61:375–80. doi:10.1099/ijs.0.018671-0.
  • Weiss, S., Z. Z. Xu, S. Peddada, A. Amir, K. Bittinger, A. Gonzalez, C. Lozupone, J. R. Zaneveld, Y. Vázquez-Baeza, A. Birmingham. 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27. doi:10.1186/s40168-017-0237-y.
  • Welch, B. L. 1951. On the comparison of several mean values: An alternative approach. Biometrika 38:330–35. doi:10.1093/biomet/38.3-4.330.
  • Whitehead, A., B. Dubansky, C. Bodinier, T. I. Garcia, S. Miles, C. Pilley, V. Raghunathan, J. L. Roach, N. Walker, R. B. Walter. 2011. Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc. Natl. Acad. Sci. USA 109:20298–302.
  • Yancheva, V., I. Velcheva, S. Stoyanova, and E. Georgieva. 2016. Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review. Appl. Ecol. Environ. Res. 14:47–75. doi:10.15666/aeer/1401_047075.
  • Yuan, J., Q. Lai, F. Sun, T. Zheng, and Z. Shao. 2015. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front. Microbiol. 6:853. doi:10.3389/fmicb.2015.00853.
  • Zhu, L., K. Qu, B. Xia, X. Sun, and B. Chen. 2016. Transcriptomic response to water accommodated fraction of crude oil exposure in the gill of Japanese flounder, Paralichthys olivaceus. Mar. Pollut. Bull. 106:283–91. doi:10.1016/j.marpolbul.2015.12.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.