401
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Toxicity of binary mixtures of Al2O3 and ZnO nanoparticles toward fibroblast and bronchial epithelium cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18 (2):265–67. doi:10.1093/jee/18.2.265a.
  • Aebi, H. 1984. Catalase in vitro. Meth. Enzymol. 105:121–26. doi:doi.10.1016/S0076-6879(84)05016-3.
  • Akhtar, M. J., M. Ahamed, S. Kumar, M. A. Majeed Khan, J. Ahmad, and S. A. Alrokayan. 2012. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomedicine 7:845–57. doi:10.2147/IJN.S29129.
  • Alaraby, M., B. Annangi, R. Marcos, and A. Hernández. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. J. Toxicol. Environ. Health B 19:65–104. doi:doi.10.1080/10937404.2016.1166466.
  • Alim, S., J. Vejayan, M. M. Yusoff, and A. K. M. Kafi. 2018. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens. Bioelectron. 121:125–36. doi:doi.10.1016/j.bios.2018.08.051.
  • Almutary, A., and B. J. S. Sanderson. 2016. The MTT and crystal violet assays. Int. J. Toxicol. 35:454–62. doi:doi.10.1177/1091581816648906.
  • Alshatwi, A. A., P. V. Subbarayan, E. Ramesh, A. A. Al-Hazzani, M. A. Alsaif, and A. A. Alwarthan. 2013. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells. Food Addit. Contam. A 30:1–10. doi:doi.10.1080/19440049.2012.729160.
  • Angell, C., M. Kai, S. Xie, X. Dong, and Y. Chen. 2018. Bioderived DNA nanomachines for potential uses in biosensing, diagnostics, and therapeutic applications. Adv. Healthc. Mater. 7:1701189. doi:doi.10.1002/adhm.201701189.
  • Balasubramanyam, A., N. Sailaja, M. Mahboob, M. F. Rahman, S. M. Hussain, and P. Grover. 2009. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24:245–51. doi:doi.10.1093/mutage/gep003.
  • Bank, H. L. 1988. Rapid assessment of islet viability with acridine orange and propidium iodide. In Vitro Cell. Dev. Biol. 24:266–73. doi:doi.10.1007/BF02628826.
  • Benavides, M., J. Fernández-Lodeiro, P. Coelho, C. Lodeiro, and M. S. Diniz. 2016. Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish. Carassius Auratus. Environ. Sci. Pollut. Res. 23:24578–91. doi:doi.10.1007/s11356-016-7915-3.
  • Beutler, E., O. Duron, and B. M. Kelly. 1963. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61:882–88.
  • Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci. 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5:9–19. doi:doi.10.1097/WOX.0b013e3182439613.
  • Böhme, S., H.-J. Stärk, T. Meißner, A. Springer, T. Reemtsma, D. Kühnel, and W. Busch. 2014. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods. J. Nanopart. Res. 16:2592. doi:doi.10.1007/s11051-014-2592-y.
  • Boucrot, E., and T. Kirchhausen. 2007. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl. Acad. Sci. U.S.A. 104:7939–44. doi:doi.10.1073/pnas.0702511104.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–54. doi:doi.10.1016/0003-2697(76)90527-3.
  • Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60:309–19. doi:doi.10.1021/ja01269a023.
  • Callister, C., M. Callister, M. Nolan, and E. Nolan. 2020. Preventative agents: The multiple uses of silver nanoparticles in dentistry. Compend. Continuing Educ. Dent. 41:143–47.
  • Cao, Q., Q. H. Hu, S. Khan, Z. J. Wang, A. J. Lin, X. Du, and Y. G. Zhu. 2007. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. J. Hazard. Mater. 148:377–82. doi:doi.10.1016/j.jhazmat.2007.02.050.
  • Chen, P., H. Wang, M. He, B. Chen, B. Yang, and B. Hu. 2019. Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicol. Environ. Saf. 171:337–46. doi:10.1016/j.ecoenv.2018.12.096.
  • Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:20. doi:10.2307/4041058.
  • Crosera, M., G. Adami, M. Mauro, M. Bovenzi, E. Baracchini, and F. Larese Filon. 2016. In vitro dermal penetration of nickel nanoparticles. Chemosphere 145:301–06. doi:doi.10.1016/j.chemosphere.2015.11.076.
  • Crosera, M., M. Bovenzi, G. Maina, G. Adami, C. Zanette, C. Florio, and F. Filon Larese. 2009. Nanoparticle dermal absorption and toxicity: A review of the literature. Int. Arch. Occup. Environ. Health 82:1043–55. doi:doi.10.1007/s00420-009-0458-x.
  • Cure, J., H. Assi, K. Cocq, L. Marìn, K. Fajerwerg, P. Fau, E. Bêche, Y. J. Chabal, A. Estève, and C. Rossi. 2018. Controlled growth and grafting of high-density Au nanoparticles on zinc oxide thin films by photo-deposition. Langmuir 34:1932–40. doi:doi.10.1021/acs.langmuir.7b04105.
  • Dalai, S., S. Pakrashi, M. Bhuvaneshwari, V. Iswarya, N. Chandrasekaran, and A. Mukherjee. 2014. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat. Toxicol. 146:28–37. doi:10.1016/j.aquatox.2013.10.029.
  • Daoud Ali, D., S. Alkahtani, and S. Alarifi. 2015. Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells. Int. J. Nanomedicine 10:3751. doi:10.2147/IJN.S82050.
  • Dávila-Grana, Á., L. Diego-González, Á. González-Fernández, and R. Simón-Vázquez. 2018. Synergistic effect of metal oxide nanoparticles on cell viability and activation of MAP kinases and NFκB. Int. J. Mol. Sci. 19:246. doi:doi.10.3390/ijms19010246.
  • Dayem, A. A., M. K. Hossain, S. Bin Lee, K. Kim, S. K. Saha, G. M. Yang, H. Y. Choi, and S. G. Cho. 2017. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18. doi:doi.10.3390/ijms18010120.
  • Demir, E., A. Creus, and R. Marcos. 2014. Genotoxicity and DNA repair processes of zinc oxide nanoparticles. J. Toxicol. Environ. Health A 77:1292–303. doi:10.1080/15287394.2014.935540.
  • Donaldson, K., V. Stone, A. Clouter, L. Renwick, and W. MacNee. 2001. Ultrafine particles. Occup. Environ. Med. 58:211–16. doi:doi.10.1136/oem.58.3.211.
  • Draper, H. H., and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Meth. Enzymol. 186:421–31. doi:doi.10.1016/0076-6879(90)86135-I.
  • Duran, N., M. Duran, M. B. DeJesus, A. B. Seabra, W. J. Favaro, and G. Nakazato. 2016. Silver nanoparticles: A new view on mechanistic aspects of antimicrobial activity. Nanomedicine 12:789–99. doi:10.1016/j.nano.2015.11.016.
  • Ferreira, A. J., J. Cemlyn-Jones, and C. Robalo Cordeiro. 2013. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev. Port. Pneumol. 19:28–37. doi:doi.10.1016/j.rppneu.2012.09.003.
  • Filippi-Chiela, E. C., M. M. Oliveira, B. Jurkovski, S. M. Callegari-Jacques, V. D. da Silva, and G. Lenz. 2012. Nuclear morphometric analysis (NMA): Screening of senescence, apoptosis and nuclear irregularities. PLoS ONE 7. doi:doi.10.1371/journal.pone.0042522.
  • Fink, S. L., and B. T. Cookson. 2005. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73:1907–16. doi:doi.10.1128/IAI.73.4.1907-1916.2005.
  • Franken, N. A. P., H. M. Rodermond, J. Stap, J. Haveman, and C. van Bree. 2006. Clonogenic assay of cells in vitro. Nat. Protoc. 1:2315–19. doi:doi.10.1038/nprot.2006.339.
  • Hashimoto, M., J. I. Sasaki, and S. Imazato. 2016. Investigation of the cytotoxicity of aluminum oxide nanoparticles and nanowires and their localization in L929 fibroblasts and RAW264 macrophages. J. Biomed. Mater. Res. B: Appl. Biomater. 104:241–52. doi:doi.10.1002/jbm.b.33377.
  • Hua, J., W. J. G. M. Peijnenburg, and M. G. Vijver. 2016. TiO2 nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio rerio). NanoImpact 2:45–53. doi:doi.10.1016/j.impact.2016.06.005.
  • Il, K. B., Y. H. Joo, P. J. Pak, J.-S. Kim, and N. Chung. 2015. Different shapes of Al2O3 particles induce differential cytotoxicity via a mechanism involving lysosomal destabilization and reactive oxygen species generation. J. Korean Soc. Appl. Biol. Chem. 58:433–42. doi:doi.10.1007/s13765-015-0038-6.
  • Iswarya, V., M. Bhuvaneshwari, N. Chandrasekaran, and A. Mukherjee. 2016. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aquat. Toxicol. 178:209–21. doi:10.1016/j.aquatox.2016.08.007.
  • Ivask, A., T. Titma, M. Visnapuu, H. Vija, A. Kakinen, M. Sihtmae, S. Pokhrel, L. Madler, M. Heinlaan, V. Kisand, et al. 2015. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr. Top Med. Chem. 15:1914–29. doi:10.2174/1568026615666150506150109.
  • Jain, K., E. Kohli, D. Prasad, K. Kamal, S. M. Hussain, and S. B. Singh. 2015. In vitro cytotoxicity assessment of metal oxide nanoparticles. Nanomed. Nanobiol. 1:10–19. doi:10.1166/nmb.2014.1003.
  • Jeng, H. A., and J. Swanson. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A 41:2699–2611. doi:doi.10.1080/10934520600966177.
  • Kar, K. K., S. Srivastava, A. Rahaman, and S. K. Nayak. 2008. Acrylonitrile-butadiene-styrene nanocomposites filled with nanosized alumina. Polym. Compos. 29:489–99. doi:doi.10.1002/pc.20387.
  • Kaweeteerawat, C., P. N. Ubol, S. Sangmuang, A. Auerviriyavit, and R. Maniratanachote. 2017. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health A 80:1276–89. doi:10.1080/15287394.2017.1376727.
  • Kengar, M. D., A. A. Jadhav, S. B. Kumbhar, and R. P. Jadhav. 2019. A review on nanoparticles and its application. Asian J. Pharm. Technol. 9:115. doi:doi.10.5958/2231-5713.2019.00020.5.
  • Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A. G. Lenz, T. Fernandes, R. P. F. Schins, F. R Cassee et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health - ENPRA project - the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health B 19:1–28. doi:doi.10.1080/10937404.2015.1126210.
  • Keston, A. S., and R. Brandt. 1965. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11:1–5. doi:doi.10.1016/0003-2697(65)90034-5.
  • Kim, I.-S., M. Baek, and S.-J. Choi. 2010. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci. Nanotechnol. 10:3453–58. doi:doi.10.1166/jnn.2010.2340.
  • Krewski, D., R. A. Yokel, E. Nieboer, D. Borchelt, J. Cohen, J. Harry, S. Kacew, J. Lindsay, A. M. Mahfouz, and V. Rondeau. 2007. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B 10:1–269. doi:doi.10.1080/10937400701597766.
  • Król, A., P. Pomastowski, K. Rafińska, V. Railean-Plugaru, and B. Buszewski. 2017. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 249:37–52. doi:10.1016/j.cis.2017.07.033.
  • Li, L., M. L. Fernández-Cruz, M. Connolly, E. Conde, M. Fernández, M. Schuster, and J. M. Navas. 2015. The potentiation effect makes the difference: Non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Sci. Total Environ. 505:253–60. doi:10.1016/j.scitotenv.2014.10.020.
  • Li, N., T. Xia, and A. E. Nel. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 44:1689–99. doi:doi.10.1016/j.freeradbiomed.2008.01.028.
  • Li, X., S. Zhou, and W. Fan. 2016. Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. Int. J. Environ. Res. Public Health 13:575. doi:doi.10.3390/ijerph13060575.
  • Lin, W., I. Stayton, Y. W. Huang, X. D. Zhou, and Y. Ma. 2008. Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicol. Environ. Chem. 90:983–96. doi:doi.10.1080/02772240701802559.
  • Mahdavi, S., M. Jalali, and A. Afkhami. 2013. Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem. Eng. Commun. 200:448–70. doi:doi.10.1080/00986445.2012.686939.
  • Maiorano, G., S. Sabella, B. Sorce, V. Brunetti, M. A. Malvindi, R. Cingolani, and P. P. Pompa. 2010. Effects of cell culture media on the dynamic formation of protein−nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–91. doi:doi.10.1021/nn101557e.
  • Mancuso, L., C. Manis, A. Murgia, M. Isola, A. Salis, F. Piras, P. Caboni, and G. Cao. 2018. Effect of ZnO nanoparticles on human bone marrow mesenchymal stem cells: Viability, morphology, particles uptake, cell cycle and metabolites. Biosci. Biotechnol. Res. Asia 15:751–65. doi:doi.10.13005/bbra/2684.
  • McCord, J. M., and I. Fridovich. 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–55.
  • Melegari, S. P., C. F. Fuzinatto, R. A. Gonçalves, B. V. Oscar, D. S. Vicentini, and W. G. Matias. 2019. Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials? Chemosphere 224:237–46. doi:10.1016/j.chemosphere.2019.02.093.
  • Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4.
  • Ng, C. T., L. Q. Yong, M. P. Hande, C. N. Ong, L. E. Yu, B. H. Bay, and G. H. Baeg. 2017. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int. J. Nanomedicine 12:1621–37. doi:doi.10.2147/IJN.S124403.
  • Niska, K., E. Zielinska, M. W. Radomski, and I. Inkielewicz-Stepniak. 2018. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem. Biol. Interact. 295:38–51. doi:10.1016/j.cbi.2017.06.018.
  • Nogueira, D. J., M. Arl, J. S. Köerich, C. Simioni, L. C. Ouriques, D. S. Vicentini, and W. G. Matias. 2019. Comparison of cytotoxicity of α-Al2O3 and η-Al2O3 nanoparticles toward neuronal and bronchial cells. Toxicol. In Vitro 61. doi:doi.10.1016/j.tiv.2019.104596.
  • Oesterling, E., N. Chopra, V. Gavalas, X. Arzuaga, E. J. Lim, R. Sultana, D. A. Butterfield, L. Bachas, and B. Hennig. 2008. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol. Lett. 178:160–66. doi:10.1016/j.toxlet.2008.03.011.
  • Pandurangan, M., and D. H. Kim. 2015. In vitro toxicity of zinc oxide nanoparticles: A review. J. Nanopart. Res. 17. doi:doi.10.1007/s11051-015-2958-9.
  • Patel, P., K. Kansara, V. A. Senapati, R. Shanker, A. Dhawan, and A. Kumar. 2016. Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells. Mutagenesis 31:481–90. doi:doi.10.1093/mutage/gew014.
  • Periasamy, V. S., J. Athinarayanan, and A. A. Alshatwi. 2016. Aluminum oxide nanoparticles alter cell cycle progression through CCND1 and EGR1 gene expression in human mesenchymal stem cells. Biotechnol. Appl. Biochem. 63:320–27. doi:doi.10.1002/bab.1368.
  • Radziun, E., J. Dudkiewicz Wilczyńska, I. Ksiazek, K. Nowak, E. L. Anuszewska, A. Kunicki, A. Olszyna, and T. Zabkowski. 2011. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol. In Vitro 25:1694–700. doi:doi.10.1016/j.tiv.2011.07.010.
  • Rajput, V. D., T. M. Minkina, A. Behal, S. N. Sushkova, S. Mandzhieva, R. Singh, A. Gorovtsov, V. S. Tsitsuashvili, W. O. Purvis, K. A. Ghazaryan, et al. 2018. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnol. Monit. Manage. 9:76–84. doi:10.1016/j.enmm.2017.12.006.
  • Roy, R., M. Das, and P. D. Dwivedi. 2015. Toxicological mode of action of ZnO nanoparticles: Impact on immune cells. Mol. Immunol. 63:184–92. doi:doi.10.1016/j.molimm.2014.08.001.
  • Sen, T. K., and M. V. Sarzali. 2008. Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study. Chem. Eng. J. 142:256–62. doi:10.1016/j.cej.2007.12.001.
  • Song, Z. M., H. Tang, X. Deng, K. Xiang, A. Cao, Y. Liu, and H. Wang. 2017. Comparing toxicity of alumina and zinc oxide nanoparticles on the human intestinal epithelium in vitro model. J. Nanosci. Nanotechnol. 17:2881–91. doi:doi.10.1166/jnn.2017.13056.
  • Sprague, J. B., and B. A. Ramsay. 1965. Lethal levels of mixed copper–zinc solutions for juvenile salmon. J. Fish. Res. Board Can. 22:425–32. doi:doi.10.1139/f65-042.
  • Srikanth, K., A. Mahajan, E. Pereira, A. C. Duarte, and J. Venkateswara Rao. 2015. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in chinook salmon (CHSE-214) cells. J. Appl. Toxicol. 35:1133–40. doi:doi.10.1002/jat.3142.
  • Stern, S. T., P. P. Adiseshaiah, and R. M. Crist. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 9:1. doi:doi.10.1186/1743-8977-9-20.
  • Su, H., Y. Wang, Y. Gu, L. Bowman, J. Zhao, and M. Ding. 2018. Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol. 38:3–24. doi:doi.10.1002/jat.3476.
  • Taccola, L., V. Raffa, C. Riggio, O. Vittorio, M. C. Iorio, R. Vanacore, A. Pietrabissa, and A. Cuschieri. 2011. Zinc oxide nanoparticles as selective killers of proliferating cells. Int. J. Nanomedicine 6:1129–40. doi:doi.10.2147/IJN.S16581.
  • Vicentini, D. S., R. C. Puerari, K. G. Oliveira, M. Arl, S. P. Melegari, and W. G. Matias. 2017. Toxicological impact of morphology and surface functionalization of amorphous SiO2 nanomaterials. NanoImpact 5:6–12. doi:10.1016/j.impact.2016.11.003.
  • Vicentini, D. S., A. Smania, and M. C. M. Laranjeira. 2010. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater. Sci. Eng. C 30:503–08. doi:10.1016/j.msec.2009.01.026.
  • Wang, C., X. Hu, Y. Gao, and Y. Ji. 2015. ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. Biomed. Res. Int. 2015. doi:doi.10.1155/2015/423287.
  • Wang, Y., and B. Nowack. 2018. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions. Environ. Pollut. 235:589–601. doi:10.1016/j.envpol.2018.01.004.
  • Wells, M. A., A. Abid, I. M. Kennedy, and A. I. Barakat. 2012. Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology 6:837–46. doi:10.3109/17435390.2011.625131.
  • Wiesner, M. R., G. V. Lowry, P. Alvarez, D. Dionysiou, and P. Biswas. 2006. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40:4336–45. doi:doi.10.1021/es062726m.
  • Wu, H., J. J. Yin, W. G. Wamer, M. Zeng, and Y. M. Lo. 2014. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J. Food Drug Anal. 22:86–94. doi:doi.10.1016/j.jfda.2014.01.007.
  • Ye, N., Z. Wang, H. Fang, S. Wang, and F. Zhang. 2017. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. J. Environ. Sci. Health A 52:555–5. doi:doi.10.1080/10934529.2017.1284434.
  • Yu, R., J. Wu, M. Liu, G. Zhu, L. Chen, Y. Chang, and H. Lu. 2016. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere 153:187–97. doi:10.1016/j.chemosphere.2016.03.065.
  • Yuan, J. H., Y. Chen, H. X. Zha, L. J. Song, C. Y. Li, J. Q. Li, and X. H. Xia. 2010. Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf. B Biointerfaces 76:145–50. doi:10.1016/j.colsurfb.2009.10.028.
  • Zhang, Q., L. Xu, J. Wang, E. Sabbioni, L. Piao, M. Di Gioacchino, and Q. Niu. 2013. Lysosomes involved in the cellular toxicity of nano-alumina: Combined effects of particle size and chemical composition. J. Biol. Regul. Homeost. Agents 27:365–75.
  • Zhang, X. Q., L. H. Yin, M. Tang, and Y. P. Pu. 2011. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed. Environ. Sci. 24:661–69. doi:doi.10.3967/0895-3988.2011.06.011.
  • Zhang, Z. J. I., Z. J. Tang, Z. Y. Zhu, Z. M. Cao, H. J. Chen, W. J. Zheng, X. Hu, H. Z. Lian, and L. Mao. 2018. The time-dependent cellular response mechanism upon exposure to zinc oxide nanoparticles. J. Nanopart. Res. 20. doi:doi.10.1007/s11051-018-4333-0.
  • Zhao, J., and V. Castranova. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B 14:593–532. doi:doi.10.1080/10937404.2011.615113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.