542
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Erythromycin in the aquatic environment: deleterious effects on the initial development of zebrafish

, , & ORCID Icon

References

  • Albert, R. K., and J. L. Schuller. 2014. Macrolide antibiotics and the risk of cardiac arrhythmias. Am. J. Respir. Crit. Care Med. 189:1173–80. doi:10.1164/rccm.201402-0385CI.
  • Altenhofen, S., D. D. Nabinger, P. E. R. Bitencourt, and C. D. Bonan. 2019. Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. Environ. Pollut. 245:1117–23. doi:10.1016/j.envpol.2018.11.095.
  • Babich, R., H. Hamlin, L. Thayer, M. Dorr, Z. Wei, A. Neilson, and N. Jayasundara. 2020. Mitochondrial response and resilience to anthropogenic chemicals during embryonic development. Comparative Biochem. Physiol. Part C 233:108759. doi:10.1016/j.cbpc.2020.108759.
  • Balkrishna, A., Y. Rustagi, K. Bhattacharya, and A. Varshney. 2020. Application of zebrafish model in the suppression of drug-induced cardiac hypertrophy by traditional indian medicine yogendra ras. Biomolecules 10:600. doi:10.3390/biom10040600.
  • Boxall, A. B. A., M. A. Rudd, B. W. Brooks, D. J. Caldwell, K. Choi, S. Hickmann, E. Innes, K. Ostapyk, J. P. Staveley, T. Verslyche. 2012. Pharmaceuticals and personal care products in the environment: What are the big questions? Environ. Health Perspect. 120:1221–29. doi:10.1289/ehp.1104477.
  • Burns, E. E., L. J. Carter, J. Snape, J. Thomas-Oates, and A. B. A. Boxall. 2018. Application of prioritization approaches to optimize environmental monitoring and testing of pharmaceuticals. J. Toxicol. Environ. Health B 21:115–41.
  • Chen, H., L. Jing, Y. Teng, and J. Wang. 2018. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 618:409–18. doi:10.1016/j.scitotenv.2017.11.054.
  • Cheng, Y. J., X. Y. Nie, X. M. Chen, X. X. Lin, K. Tang, W. T. Zeng, W. Y. Mei, L. J . Liu, M. Long, F. J. Yao. 2015. The role of macrolide antibiotics in increasing cardiovascular risk. J. Am. Coll. Cardiol. 66:2173–84. doi:10.1016/j.jacc.2015.09.029.
  • Clift, D., H. Richendrfer, R. J. Thorn, R. M. Colwill, and R. Creton. 2014. High-throughput analysis of behavior in zebrafish larvae: Effects of feeding. Zebrafish 11:455–61. doi:10.1089/zeb.2014.0989.
  • Domingues, I., R. Oliveira, A. M. V. M. Soares, and M. J. B. Amorim. 2016. Effects of ivermectin on Danio rerio: A multiple endpoint approach: Behaviour, weight and subcellular markers. Ecotoxicology 25:491–99. doi:10.1007/s10646-015-1607-5.
  • Duan, L., Y. Zhang, B. Wang, G. Cagnetta, S. Deng, J. Huang, Y. Wang, and G. Yu. 2020. Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017. Environ. Pollut. 264:114753. doi:10.1016/j.envpol.2020.114753.
  • Faria, M., E. Prats, K. A. Novoa-Luna, J. Bedrossiantz, C. Gómez-Canela, L. M. Gómez-Oliván, and D. Raldúa. 2019. Development of a vibrational startle response assay for screening environmental pollutants and drugs impairing predator avoidance. Sci. Total Environ. 650:87–96. doi:10.1016/j.scitotenv.2018.08.421.
  • FDA, 2019. 2018 Summary report on antimicrobials sold or distributed for use in food- producing animals. 2019. Food and Drug Administration, Center for Veterinary Medicine, Rockville, MD
  • Figueroa, D., A. Signore, O. Araneda, H. R. Contreras, M. Concha, and C. Garcia. 2020. Toxicity and differential oxidative stress effects on zebrafish larvae following exposure to toxins from the okadaic acid group. J. Toxicol. Environ. Health A 83:573–88.
  • Fraysse, B., R. Mons, and J. Garric. 2006. Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol. Environ. Saf. 63:253–67. doi:10.1016/j.ecoenv.2004.10.015.
  • Garbinato, C., S. E. Schneider, A. Sachett, L. Decui, G. M. Conterato, L. G. Müller, and A. M. Siebel. 2020. Exposure to ractopamine hydrochloride induces changes in heart rate and behavior in zebrafish embryos and larvae. Environ. Sci. Pollut. Res. 27:21468–75. doi:10.1007/s11356-020-08634-2.
  • Hirsch, R., T. Ternes, K. Haberer, and K.-L. Kratz. 1999. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 225:109–18. doi:10.1016/S0048-9697(98)00337-4.
  • Huang, H., H. Changjiang, L. Wang, X. Ye, C. Bai, M. T. Simonich, R. L. Tanguay, and Q. Dong. 2010. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonic acid (PFOS). Aquatic Toxicol. 98:139–47. doi:10.1016/j.aquatox.2010.02.003.
  • Incardona, J. P., L. D. Gardner, T. L. Linbo, T. L. Brown, A. J. Esbaugh, E. M. Mager, J. D. Stieglitz, B. L. French, J. S. Labenia, C. A. Laetz. 2014. PNAS Plus: From the cover: Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc. Nat. Acad. Sci. USA 111:E1510–E1518. doi:10.1073/pnas.1320950111.
  • Jin, Y., Z. Liu, T. Peng, and Z. Fu. 2015. The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunol. 43:405–14. doi:10.1016/j.fsi.2015.01.010.
  • Jjemba, P. K. 2006. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol. Environ. Saf. 63:113–30. doi:10.1016/j.ecoenv.2004.11.011.
  • Johnson, A. C., K. Virginie, D. Egon, and J. P. Sumpter. 2015. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Sci. Total Environ. 511:747–55. doi:10.1016/j.scitotenv.2014.12.055.
  • Kalichak, F., R. Idalencio, J. G. S. da Rosa, H. H. A. Barcellos, M. Fagundes, A. Piato, and L. J. G. Barcellos. 2017. Psychotropic in the environment: Risperidone residues affect the behavior of fish larvae. Sci Rep 7. doi:10.1038/s41598-017-14575-7.
  • Kalichak, F., R. Idalencio, J. G. S. Rosa, T. A. de Oliveira, G. Koakoski, D. Gusso, M. S. de Abreu, A. C. V. Giacomini, H. H. A. Barcellos, M. Faundes. 2016. Waterborne psychoactive drugs impair the initial development of zebrafish. Environ. Toxicol. Pharmacol. 41:89–94. doi:10.1016/j.etap.2015.11.014.
  • Kilkenny, C., W. J. Browne, I. C. Cuthill, M. Emerson, and D. G. Altman. 2010. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8:e1000412. doi:10.1371/journal.pbio.1000412.
  • Klatte, S., H.-C. Schaefer, and M. Hempel. 2017. Pharmaceuticals in the environment – A short review on options to minimize the exposure of humans, animals and ecosystems. Sustain. Chem. Pharm. 5:61–66. doi:10.1016/j.scp.2016.07.001.
  • Kossack, M., S. Hein, L. Juergensen, M. Siragusa, A. Benz, H. A. Katus, P. Most, and D. Hassel. 2017. Induction of cardiac dysfunction in developing and adult zebrafish by chronic isoproterenol stimulation. J. Mol. Cell. Cardiol. 108:95–105. doi:10.1016/j.yjmcc.2017.05.011.
  • Kötke, D., J. Gandras, Z. Xie, and R. Ebinghaus. 2019. Prioritised pharmaceuticals in german estuaries and coastal waters: Occurrence and environmental risk assessment. Environ. Pollut. 255:113161. doi:10.1016/j.envpol.2019.113161.
  • Kovalakova, P., C. Leslie, T. J. McDonald, B. Marsalek, M. Feng, and V. K. Sharma. 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 251:126351. doi:10.1016/j.chemosphere.2020.126351.
  • Li, Y., and J. Zhang. 2020. The effect of acute erythromycin exposure on the swimming ability of zebrafish (Danio rerio) and medaka (Oryzias latipes). Int. J. Environ. Res. Public Health 17:3389. doi:10.3390/ijerph17103389.
  • Liang, X., F. Wang, K. Li, X. Nie, and H. Fang. 2020. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): Developmental toxicity, oxidative stress and immunotoxicity. Fish Shellfish Immunol. 96:262–69. doi:10.1016/j.fsi.2019.12.008.
  • Liu, J., G. Lu, J. Ding, Z. Zhang, and Y. Wang. 2014. Tissue distribution, bioconcentration, metabolism, and effects of erythromycin in crucian carp (Carassius auratus). Sci. Total Environ. 490:914–20. doi:10.1016/j.scitotenv.2014.05.055.
  • Liu, Y., L. Shuisheng, X. Huang, D. Lu, X. Liu, W. Ko, Y. Zhang, C. H. K. Cheng, and H. Lin. 2013. Identification and characterization of a motilin-like peptide and its receptor in teleost. Gen. Comp. Endocrinol. 186:85–93. doi:10.1016/j.ygcen.2013.02.018.
  • Mersa, A., S. Atashbar, N. Ahvar, and A. Salimi. 2020. 1,25‐Dihydroxyvitamin D3 prevents deleterious effects of erythromycin on mitochondrial function in rat heart isolated mitochondria. Clin. Exp. Pharmacol. Physiol. doi:10.1111/1440-1681.13328.
  • Nantaba, F., J. Wasswa, H. Kylin, W.-U. Palm, H. Bouwman, and K. Kümmerer. 2020. Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda. Chemosphere 239:124642. doi:10.1016/j.chemosphere.2019.124642.
  • Nepstad, R., E. Davies, D. Altin, T. Nordtug, and B. H. Hansen. 2017. Automatic determination of heart rates from microscopy videos of early life stages of fish. J. Toxicol. Environ. Health Part A 80:932–40. doi:10.1080/15287394.2017.1352212.
  • Nielsen, S. V., M. Frausin, P. G. Henriksen, K. Beedholm, and E. Baatrup. 2019. The psychoactive drug escitalopram affects foraging behavior in zebrafish (Danio Rerio). Environ. Toxicol. Chem. 38:1902–10. doi:10.1002/etc.4474.
  • OECD. 2013. Fish embryo acute toxicity (FET) test. Organisation for Economic Co-operation and Development
  • Orger, M. B., and G. G. de Polavieja. 2017. Zebrafish behavior: Opportunities and challenges. Annu. Rev. Neurosci. 40:125–47. doi:10.1146/annurev-neuro-071714-033857.
  • Rodrigues, S., S. C. Antunes, A. T. Correia, and B. Nunes. 2016. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss.. Sci. Total Environ. 545–546:591–600. doi:10.1016/j.scitotenv.2015.10.138.
  • Rodrigues, S., S. C. Antunes, A. T. Correia, and B. Nunes. 2019. Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: Detoxification metabolism, energetic balance, and neurological impairment. Environ. Sci. Pollut. Res. 26:227–39. doi:10.1007/s11356-018-3494-9.
  • Rowley, S., and M. Patel. 2013. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic. Biol. Med. 62:121–31. doi:10.1016/j.freeradbiomed.2013.02.002.
  • Schafhauser, B. H., L. A. Kristofco, C. M. R. de Oliveira, and B. W. Brooks. 2018. Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards. Environ. Pollut. 238:440–51. doi:10.1016/j.envpol.2018.03.052.
  • Schoots, A. F. M., R. C. Meijer, and J. M. Denucé. 1983. Dopaminergic regulation of hatching in fish embryos. Dev. Biol. 100:59–63. doi:10.1016/0012-1606(83)90200-2.
  • Su, D., B. Weiwei, B. W. Strobel, and Z. Qiang. 2020. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use. Sci. Total Environ. 712:134525. doi:10.1016/j.scitotenv.2019.134525.
  • Tenson, T., M. Lovmar, and M. Ehrenberg. 2003. The mechanism of action of macrolides, lincosamides and streptogramin b reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 330:1005–14. doi:10.1016/S0022-2836(03)00662-4.
  • Volberg, W. A., B. J. Koci, W. Su, J. Lin, and J. Zhou. 2002. Blockade of human cardiac potassium channel human ether-a-go-go- related gene (HERG) by macrolide antibiotics. J. Pharmacol. Exp. Therapeutics 302:320–27. doi:10.1124/jpet.302.1.320.
  • Weis, J. S., G. Smith, T. Zhou, C. Santiago-Bass, and P. Weis. 2001. Effects of contaminants on behavior: Biochemical mechanisms and ecological consequences. BioScience 51:209. doi:10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2.
  • Yu, K., X. Li, Y. Qiu, X. Zeng, X. Yu, W. Wang, X. Yi, and L. Huang. 2020. Low-dose effects on thyroid disruption in zebrafish by long-term exposure to oxytetracycline. Aquatic Toxicol. 227:105608. doi:10.1016/j.aquatox.2020.105608.
  • Zhao, D., A. C. Meyer-Gerspach, E. Deloose, J. Iven, N. Weltens, I. Depoortere, O. O’daly, J. Tack, and L. Van Oudenhove. 2018. The motilin agonist erythromycin increases hunger by modulating homeostatic and hedonic brain circuits in healthy women: A randomized, placebo-controlled study. Sci Rep 8. doi:10.1038/s41598-018-19444-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.