1,079
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism

ORCID Icon

References

  • Anand, A. S., D. N. Prasad, S. B. Singh, and E. Kohli. 2017. Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. J. Hazard. Mater. 327:180–86. doi:10.1016/j.jhazmat.2016.12.040.
  • Anbumani, S., and P. Kakkar. 2018. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25:14373–96. doi:10.1007/s11356-018-1999-x.
  • Barnes, D. K. A., F. Galgani, R. C. Thompson, and M. Barlaz. 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Transact. Royal Soc. B: Biol. Sci. 364:1985–98. doi:10.1098/rstb.2008.0205.
  • Bouwmeester, H., P. C. H. Hollman, and R. J. B. Peters. 2015. Potential health impact of environmentally released microand nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 49:8932–47. doi:10.1021/acs.est.5b01090.
  • Browne, M. A., A. Dissanayake, T. S. Galloway, D. M. Lowe, and R. C. Thompson. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42:5026–31. doi:10.1021/es800249a.
  • Chae, Y., and Y. J. An. 2017. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Mar. Pollut. Bull. 124:624–32. doi:10.1016/j.marpolbul.2017.01.070.
  • Cortés, C., J. Domenech, M. Salazar, S. Pastor, R. Marcos, and A. Hernández. 2020. Nanoplastics as a potential environmental health factor: Effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ. Sci. 7:2722–85. doi:10.1039/C9EN00523D.
  • Demir, E. 2020. An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: Toxicity, cellular uptake, oxidative stress, and DNA damage. J. Toxicol. Environ. Health, Part A 83:456–69. doi:10.1080/15287394.2020.1777236.
  • Demir, E., S. Aksakal, F. Turna, B. Kaya, and R. Marcos. 2015. In vivo genotoxic effects of four different nano-sizes forms of silica nanoparticles in Drosophila melanogaster. J. J. Hazard. Mater. 283:260–66. doi:10.1016/j.jhazmat.2014.09.029.
  • Demir, E., and R. Marcos. 2018. Antigenotoxic potential of boron nitride nanotubes. Nanotoxicology 12:868–84. doi:10.1080/17435390.2018.1482379.
  • Demir, E., T. Turna, S. Aksakal, B. Kaya, and R. Marcos. 2014. Genotoxicity of different sweeteners in Drosophila. Fresen. Environ. Bull. 23:3426–32.
  • Demir, E., G. Vales, B. Kaya, A. Creus, and R. Marcos. 2011. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–24. doi:10.3109/17435390.2010.529176.
  • Domenech, J., A. Hernández, C. Cortés, C. Cortés, and C. Cortés. 2020. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Arch. Toxicol. 94:2997–3012. doi:10.1007/s00204-020-02805-3.
  • EFSA-European Food Safety Authority. 2016. Presence of microplastics and nanoplastics in food, with particular focus on seafood. Efsa J 14: 4501.
  • Eriksen, M., L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C. Borerro, F. Galgani, P. G. Ryan, J. Reisser, and H. G. Dam. 2014. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9:e111913. doi:10.1371/journal.pone.0111913.
  • Frei, H., and F. E. Würgler. 1988. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive results. Mutat. Res. 203:297–308. doi:10.1016/0165-1161(88)90019-2.
  • Frei, H., and F. E. Würgler. 1995. Optimal experimental design and sample size for the statistical evaluation of data from somatic mutation and recombination tests (SMART) in Drosophila. Mutat. Res. 334:247–58. doi:10.1016/0165-1161(95)90018-7.
  • Galloway, T., M. Cole, and C. Lewis. 2017. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1:0116. doi:10.1038/s41559-017-0116.
  • Galloway, T. S. 2015. Micro- and nano–plastics and human health. In Marine Anthropogenic Litter, ed. M. Bergmann, L. Gutow, and M. Klages. Springer, Cham: International Publishing, 343–66, Chapter 13.
  • Graf, U., and F. E. Würgler. 1996. The somaticwhite-ivory eye spot test does not detect the same spectrum of genotoxic events as the wing somatic mutation and recombination test in Drosophila melanogaster. Environ. Mol. Mutagen. 27:219–26. doi:10.1002/(SICI)1098-2280(1996)27:3<219::AID-EM7>3.0.CO;2-9.
  • Graf, U., F. E. Würgler, A. J. Katz, H. J. Frei, H. Juon, C. B. Hall, and P. G. Kale. 1984. Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mutagenesis 6:153–88. doi:10.1002/em.2860060206.
  • Guglielmi, G. 2017. In the next 30 years, we’ll make four times more plastic waste than we ever have. Science (New York, N.Y.) 358:982–83. doi:10.1126/science.aan7121.
  • Hesler, M., L. Aengenheister, B. Ellinger, R. Drexel, S. Straskraba, C. Jost, S. Wagner, F. Meier, H. Von Briesen, C. Büchel, et al. 2019. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol. in Vitro 61:104610. doi:10.1016/j.tiv.2019.104610.
  • Ioakeimidis, C., K. N. Fotopoulou, H. K. Karapanagioti, M. Geraga, C. Zeri, E. Papathanassiou, F. Galgani, and G. Papatheodorou. 2016. The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Sci. Rep. 6:23501. doi:10.1038/srep23501.
  • Kastenbaum, M. A., and K. O. Bowman. 1970. Tables for determining the statistical significance of mutation frequencies. Mutat. Res. 9:527–49. doi:10.1016/0027-5107(70)90038-2.
  • Lambert, S., and M. Wagner. 2016. Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–17. doi:10.1016/j.chemosphere.2016.07.042.
  • Law, K. L., and R. C. Thompson. 2014. Microplastics in the seas. Science 345:144–45. doi:10.1126/science.1254065.
  • Liebmann, B., S. Köppel, P. Königshofer, T. Bucsics, T. Reiberger, and P. Schwabl. 2018. Assessment of microplastic concentrations in human stool -Preliminary results of a prospective study. Presented at UEG Week 2018, Vienna, Austria, October 24, 2018.
  • Lim, S. L., C. T. Ng, L. Zou, Y. Lu, J. Chen, B. H. Bay, H. M. Shen, and C. N. Ong. 2019. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 13:1117–32. doi:10.1080/17435390.2019.1640913.
  • Lindsley, D. L., and G. G. Zimm. 1992. The Genome of Drosophila melanogaster. San Diego, CA: Academic Press.
  • Liu, Y., W. Li, F. Lao, Y. Liu, L. Wang, R. Bai, Y. Zhao, and C. Chen. 2011. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 32:8291–303. doi:10.1016/j.biomaterials.2011.07.037.
  • Lloyd, T. E., and J. P. Taylor. 2010. Flightless flies: Drosophila models of neuromuscular disease. Ann. NY Acad. Sci. 1184:e1–e20. doi:10.1111/j.1749-6632.2010.05432.x.
  • Lo, H. K. A., and K. Y. K. Chan. 2018. Negative effects of microplastic exposure on growth and development of Crepidula onyx. Environ. Pollut. 233:588595. doi:10.1016/j.envpol.2017.10.095.
  • Loos, C., T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, and T. Simmet. 2014. Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein J. Nanotechnol. 5:2403–12. doi:10.3762/bjnano.5.250.
  • Lupski, J. R. 2007. Genomic rearrangements and sporadic disease. Nat. Genet. 39:43–47. doi:10.1038/ng2084.
  • Magara, G., A. C. Elia, K. Syberg, and F. R. Khan. 2018. Single contaminant and combined exposures of polyethylene microplastics and fluoranthene: Accumulation and oxidative stress response in the blue mussel, Mytilus edulis. J. Toxicol. Environ. Health, Part A 81:761–73. doi:10.1080/15287394.2018.1488639.
  • Magara, G., F. R. Khan, M. Pinti, K. Syberg, A. Inzirillo, and A. C. Elia. 2019. Effects of combined exposures of fluoranthene and polyethylene or polyhydroxybutyrate microplastics on oxidative stress biomarkers in the blue mussel (Mytilus edulis). J. Toxicol. Environ. Health, Part A 82:616–25. doi:10.1080/15287394.2019.1633451.
  • Magrì, D., P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, G. T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, et al. 2018. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: Characterization and toxicology assessment. ACS Nano 12:7690–7000. doi:10.1021/acsnano.8b01331.
  • Matthews, S., E. G. Xu, E. R. Dumont, V. Meola, O. Pikuda, R. S. Cheong, M. Guo, R. Tahara, H. C. E. Larsson, and N. Tufenkji. 2021. Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster. Environ. Sci. Nano 8:110–21.
  • Messinetti, S., S. Mercurio, M. Parolini, M. Sugni, and R. Pennati. 2018. Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies. Environ. Pollut. 237:1080–87. doi:10.1016/j.envpol.2017.11.030.
  • Parolini, M., B. De Felice, S. Gazzotti, L. Annunziata, M. Sugni, R. Bacchetta, and M. A. Ortenzi. 2020. Oxidative stress-related effects induced by micronized polyethylene terephthalate microparticles in the Manila clam. J. Toxicol. Environ. Health, Part A 83:168–79. doi:10.1080/15287394.2020.1737852.
  • Pendleton, R. G., F. Parvez, M. Sayed, and R. Hillman. 2002. Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J. Pharmacol. Exp. Ther. 300:91–96. doi:10.1124/jpet.300.1.91.
  • PlasticsEurope. 2020. Plastics-the facts 2020. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020.
  • Prata, J. C. 2018. Airborne microplastics: Consequences to human health? Environ. Pollut. 234:115–26. doi:10.1016/j.envpol.2017.11.043.
  • Rist, S., B. Carney Almroth, N. B. Hartmann, and T. M. Karlsson. 2018. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 626:720–26. doi:10.1016/j.scitotenv.2018.01.092.
  • Rubio, L., I. Barguilla, J. Domenech, R. Marcos, and A. Hernández. 2020a. Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines. J. Hazard. Mater. 398:122900. doi:10.1016/j.jhazmat.2020.122900.
  • Rubio, L., R. Marcos, and A. Hernández. 2020b. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. J. Toxicol. Environ. Health, Part B 23:51–68. doi:10.1080/10937404.2019.1700598.
  • Schiavo, S., M. Oliviero, S. Chiavarini, S. Dumontet, and S. Manzo. 2020. Polyethylene, Polystyrene, and Polypropylene leachate impact upon marine microalgae Dunaliella tertiolecta. J. Toxicol. Environ. Health, Part A 84:249–60. doi:10.1080/15287394.2020.1860173.
  • Schirinzi, G. F., I. Pérez-Pomeda, J. Sanchís, C. Rossini, M. Farré, and D. Barceló. 2017. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res. 159:579–87. doi:10.1016/j.envres.2017.08.043.
  • Silva, B., A. S. Bastos, C. I. L. Justino, J. P. Da Costa, A. C. Duarte, and T. A. P. Rocha-Santos. 2018. Microplastics in the environment: Challenges in analytical chemistry-a review. Analytica Chimica Acta 1017:1–19. doi:10.1016/j.aca.2018.02.043.
  • Stock, V., L. Böhmert, E. Lisicki, R. Block, J. Cara-Carmona, L. K. Pack, R. Selb, D. Lichtenstein, L. Voss, C. J. Henderson, et al. 2019. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 93:1817–33. doi:10.1007/s00204-019-02478-7.
  • Sussarellu, R., M. Suquet, Y. Thomas, C. Lambert, C. Fabioux, M. E. J. Pernet, N. L. Goïc, V. Quillien, C. Mingant, Y. Epelboin, et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. 113:2430–35. doi:10.1073/pnas.1519019113.
  • Tokiwa, Y., B. P. Calabia, C. U. Ugwu, and S. Aiba. 2009. Biodegradability of plastics. Int. J. Mol. Sci. 10:3722–42. doi:10.3390/ijms10093722.
  • Wright, S. L., and F. J. Kelly. 2017. Plastic and human health: A micro issue? Environ. Sci. Technol. 51:6634–47. doi:10.1021/acs.est.7b00423.
  • Wright, S. L., R. C. Thompson, and T. S. Galloway. 2013. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178:483–92. doi:10.1016/j.envpol.2013.02.031.
  • Wu, B., X. Wu, S. Liu, Z. Wang, and L. Chen. 2019. Size dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221:333–41. doi:10.1016/j.chemosphere.2019.01.056.
  • Zhang, Y., M. B. Wolosker, Y. Zhao, H. Ren, and B. Lemos. 2020. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. Sci. Total Environ. 744:140979. doi:10.1016/j.scitotenv.2020.140979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.