197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Embryotoxic effects of Rovral® for early chicken (Gallus gallus) development

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adler, R., and T. L. Belecky-Adams. 2002. The role of bone morphogenetic proteins in the differentiation of the ventral optic cup. Development 129:3161–71. doi:10.1242/dev.129.13.3161.
  • Agência Nacional de Vigilância Sanitária. 2020. Painel de monografias de agrotóxicos. Accessed September 29, 2020. http://portalanalitico.anvisa.gov.br/monografias-de-agrotoxicos
  • Aire, T. A. 2005. Short-term effects of carbendazim on the gross and microscopic features of the testes of Japanese quails (Coturnix coturnix japonica). Anat. Embryol. 210:43–49. doi:10.1007/s00429-005-0001-0.
  • Akaskal, F. I., and A. Ciltas. 2018. Developmental toxicity of penconazole in zebrafish (Danio rerio) embryos. Chemosphere 200:8–15. doi:10.1016/j.chemosphere.2018.02.094.
  • Alavanja, M. C. R., and M. R. Bonner. 2012. Occupational pesticide exposures and cancer risk: A review. J. Toxicol. Environ. Health Part B 15:238–63. doi:10.1080/10937404.2012.632358.
  • Aluigi, M. G., C. Falugi, M. G. Mugno, D. Privitera, and M. Chiantore. 2010. Dose-dependent effects of chlorpyriphos, an organophosphate pesticide, on metamorphosis of the sea urchin, Paracentrotus lividus. Ecotoxicology 19:520–29. doi:10.1007/s10646-009-0433-z.
  • Andleeb, S., F. Zahid, Y. N. Noor-Ul-Ain, and C. Ara. 2018. Vulnerability of three days old chick embryos to permethrin induced toxicities. Punjab Univ. J. Zool. 33:47–53. doi:10.17582/pujz/2018.33.1.47.53.
  • Anwar, K. 2003. Cypermethrin, a pyrethroid insecticide induces teratological and biochemical changes in young chick embryos. Pak. J. Biol. Sci. 6:1698–705. doi:10.3923/pjbs.2003.1698.1705.
  • Bellairs, R., and M. Osmond. 2014. The atlas of chick development. 3rd ed. Oxford: Academic Press, Elsevier.
  • Beyea, M. M., T. J. Benfey, and J. D. Kieffer. 2005. Hematology and stress physiology of juvenile diploid and triploid shortnose sturgeon (Acipenser brevirostrum). Fish Physiol. Biochem. 31:303. doi:10.1007/s10695-005-1552-y.
  • Biga, L. M., and A. R. Blaustein. 2013. Variations in lethal and sublethal effects of cypermethrin among aquatic stages and species of anuran amphibians. Environ. Toxicol. Chem. 32:2855–60. doi:10.1002/etc.2379.
  • Bletsou, A. A., A. H. Hanafi, M. E. Dasenaki, and N. S. Thomaidis. 2013. Development of specific LC-ESI-MS/MS methods to determine bifenthrin, lufenuron, and iprodione residue levels in green beans, peas, and chili peppers under Egyptian field conditions. Food Anal. Methods 6:1099–112. doi:10.1007/s12161-012-9515-2.
  • Bouaziz, C., I. Graiet, A. Salah, I. Ben Salem, and S. Abid. 2020. Influence of bifentrin, a pyrethriod pesticide, on human colorectal HCT-116 cells attributed to alterations in oxidative stress involving mitochondrial apoptotic processes. J. Toxicol. Environ. Health A 83:331–40. doi:10.1080/15287394.2020.1755756.
  • Boyarchuk, O., L. Volyanska, and L. Dmytrash. 2017. Clinical variability of chromosome 22q11. 2 deletion syndrome. Cent. Eur. J. Immunol. 42:412. doi:10.5114/ceji.2017.72818.
  • Bruns, G. A. P., and V. M. Ingram. 1973. The erythroid cells and haemoglobins of the chick embryo. Philos. Trans. R. Soc. London B 266:225–305.
  • Budai, P., R. Szabó, J. Lehel, E. Kormos, A. Takács, A. Tatai, and G. Somody. 2012. Toxicity of chlorothalonil containing formulation and Cu-sulphate to chicken. Commun. Agric. Appl. Biol. Sci. 77:449–54.
  • Burns, C. J., L. J. McIntosh, P. J. Mink, A. M. Jurek, and A. A. Li. 2013. Pesticide exposure and neurodevelopmental outcomes: Review of the epidemiologic and animal studies. J. Toxicol. Environ. Health B 16:127–283. doi:10.1080/10937404.2013.783383.
  • Canadian Centre for Occupational Health and Safety.2018. What is a LD50 and LC50? Last Modified November 12, Accessed February 16, 2020. https://www.ccohs.ca/oshanswers/chemicals/ld50.html
  • Canault, M., K. Certel, D. Schatzberg, D. D. Wagner, and R. O. Hynes. 2010. The lack of ADAM17 activity during embryonic development causes hemorrhage and impairs vessel formation. PloS One 5:e13433. doi:10.1371/journal.pone.0013433.
  • Carrasco, K. R., K. L. Tilbury, and M. S. Myers. 1990. Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can. J. Fish. Aquat. Sci. 47:2123–36. doi:10.1139/f90-237.
  • Chaudhary, S., M. S. Ansari, M. N. Abbas, S. Kausar, R. Iqbal, R. Saleem, and J. I. S. Sabir. 2017. Toxic effects of chlorpyrifos on 12th day desi chick embryo (Gallus gallus domesticus). Nucleus 54:136–40.
  • Chaufan, G., C. Galvano, M. Nieves, M. D. Mudry, M. D. C. Ríos De Molina, and N. B. Andrioli. 2019. Oxidative response and micronucleus centromere assay in HEp-2 cells exposed to fungicide iprodione. Chem. Res. Toxicol. 32:745–52. doi:10.1021/acs.chemrestox.8b00405.
  • Clarke, G. M., and L. J. McKenzie. 1992. Fluctuating asymmetry as a quality control indicator for insect mass rearing processes. J. Econ. Entomol. 85:2045–50. doi:10.1093/jee/85.6.2045.
  • Commission of the European Communities. 2006. Monitoring of pesticide residues in products of plant origin in the European Union, Norway, Iceland and Liechtenstein. SEC(2008) 2902 final: Brussels, Commission Staff Working Document, Brussels/Belgium. Accessed April 15, 2021. http://ec.europa.eu/food/fvo/specialreports/pesticide_residues/report_2006_en.pdf
  • Conceição, M., and B. Protti. 2012. Genotoxicity of selected pesticides in the hen’s egg test for micronucleus induction. Ecotoxicol. Environ. Contam. 7:43–47.
  • Concha-Meyer, A., S. Grandon, G. Sepúlveda, R. Diaz, J. A. Yuri, and C. Torres. 2019. Pesticide residues quantification in frozen fruit and vegetables in Chilean domestic market using QuEChERS extraction with ultra-high-performance liquid chromatography electrospray ionization Orbitrap mass spectrometry. Food Chem. 295:64–71. doi:10.1016/j.foodchem.2019.05.046.
  • Cox, C. M., and T. J. Poole. 2000. Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns vessel formation in the quail embryo. Dev. Dyn. 218:371–82. doi:10.1002/(SICI)1097-0177(200006)218:2<371::AID-DVDY10>3.0.CO;2-Z.
  • Creuzet, S., G. Couly, and N. M. Le Douarin. 2005. Patterning the neural crest derivatives during development of the vertebrate head: Insights from avian studies. J. Anat. 207:447–59. doi:10.1111/j.1469-7580.2005.00485.x.
  • De Veaux, R. D., P. F. Velleman, and D. E. Bock. 2018. Intro Stats. 5th ed. Boston: Pearson.
  • DeSesso, J. M. 2017. Vascular ontogeny within selected thoracoabdominal organs and the limbs. Reprod. Toxicol. 70:3–20. doi:10.1016/j.reprotox.2016.10.007.
  • DeWitt, J. C., E. B. Meyer, and D. S. Henshel. 2005. Environmental toxicity studies using chickens as surrogates for wildlife: Effects of injection day. Arch. Environ. Contam. Toxicol. 48:270–77. doi:10.1007/s00244-004-2006-8.
  • Dourmishev, A. L., L. A. Dourmishev, R. A. Schwartz, and C. K. Janniger. 1999. Waardenburg syndrome. Int. J. Dermatol. 38:656–631. doi:10.1046/j.1365-4362.1999.00750.x.
  • Dutra, L. S., and A. P. Ferreira. 2017. Associação entre malformações congênitas e a utilização de agrotóxicos em monoculturas no Paraná, Brasil. Saúde Em Debate 41:241–53. doi:10.1590/0103-11042017s220.
  • Eichmann, A., L. Pardanaud, L. Yuan, and D. Moyon. 2002. Vasculogenesis and the search for the hemangioblast. J. Hematother. Stem Cell Res. 11:207–14. doi:10.1089/152581602753658411.
  • El-Shershaby, A. E. F. M., F. E. D. M. Lashein, A. A. Seleem, and A. A. Ahmed. 2020. Developmental neurotoxicity after penconazole exposure at embryo pre-and post-implantation in mice. J. Histotechnol. 43:135–46. doi:10.1080/01478885.2020.1747214.
  • European Commission – Health & Consumer Protection Directorate-General. Review report for the active substance iprodione. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 3 December 2002 in view of the inclusion of iprodione in Annex I of Council Directive 91/414/EEC. 5036/VI/98-final, December 3, 2002.
  • European Food Safety Authority. 2016. Peer review of the pesticide risk assessment of the active substance iprodione. Efsa J. 14: e04609.
  • Farag, A., H. Ebrahim, R. Elmazoudy, and E. Kadous. 2011. Developmental toxicity of fungicide carbendazim in female mice. Birth Defects Res. B Dev. Reprod. Toxicol. 92:122–30. doi:10.1002/bdrb.20290.
  • Fenech, M., W. P. Chang, M. Kirsch-Volders, N. Holland, S. Bonassi, and E. Zeiger. 2003. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 534:65–75. doi:10.1016/S1383-5718(02)00249-8.
  • FMC Agrícola. 2019. Rovral SC – Relatório do produto. MAPA/00878600, FMC Química do Brasil Ltda, Campinas, SP/Brazil. Accessed March 25, 2019. https://www.fmcagricola.com.br/Content/Fotos/Bula%20-%20Rovral.pdf
  • FMC Agrícola. 2020. Rovral SC – Relatório do produto. MAPA/02208591, FMC Química do Brasil Ltda, Campinas, SP/Brazil. Accessed February 25, 2020. https://www.fmcagricola.com.br/Content/Fotos/Bula%20-%20Rovral%20SC.pdf
  • Food and Agriculture Organization. 2006. Specifications and evaluations for agricultural pesticides. Iprodione. Food and Agriculture Organization of the United Nations. Accessed February 9, 2020. http://www.fao.org/3/ca7403en/ca7403en.pdf
  • Food and Agriculture Organization. 2010. International code of conduct on the distribution and use of pesticides: Guidance on pest and pesticide management policy development. Food and Agriculture Organization of the United Nations, June. Accessed February 9, 2020. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/Policy_2010.pdf
  • Franzen-Klein, D., M. Jankowski, C. L. Roy, H. Nguyen-Phuc, D. Chen, L. Neuman-Lee, P. Redig, and J. Ponder. 2020. Evaluation of neurobehavioral abnormalities and immunotoxicity in response to oral imidacloprid exposure in domestic chickens (Gallus gallus domesticus). J. Toxicol. Environ. Health A 83:45–65. doi:10.1080/15287394.2020.1723154.
  • Freita, V. S., M. A. Lopes, J. R. C. Meireles, L. Reis, and E. D. M. M. Cerqueira. 2014. Efeitos genotóxicos de fatores considerados de risco para o câncer bucal. Rev. Baiana Saúde Pública 29:189–99. doi:10.22278/2318-2660.2005.v29.n2.a1001.
  • Gilbert, S. F., and M. J. F. Barresi. 2016. Developmental Biology. 11th ed. Sunderland, MA: Sinauer Associates, Inc.
  • Goyal, S., H. S. Sandhu, and R. S. Brar. 2010. Histopathological alterations induced after oral sub-acute thiacloprid toxicity in Gallus domesticus. Veterinarski Arhiv 80:673–82.
  • Greenberg, J., and Q. N. Laham. 1969. Malathion-induced teratisms in the developing chick. Can. J. Zool. 47:539–42. doi:10.1139/z69-094.
  • Grote, K., L. Niemann, B. Selzsam, W. Haider, C. Gericke, M. Herzler, and I. Chahoud. 2008. Epoxiconazole causes changes in testicular histology and sperm production in the Japanese quail (Coturnix coturnix japonica). Environ. Toxicol. Chem. 27:2368–74. doi:10.1897/08-048.1.
  • Hamburger, V., and H. L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92. doi:10.1002/jmor.1050880104.
  • Hammer, Ø., D. A. T. Harper, and P. D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4:9.
  • Hashimi, M. H., R. Hashimi, and Q. Ryan. 2020. Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. Asian Plant Res. J. 5:37–47. doi:10.9734/aprj/2020/v5i430114.
  • Hassan, M. A., K. M. El Bohy, N. I. El Sharkawy, T. S. Imam, A. E. El-Metwally, A. Hamed Arisha, H. A. Mohammed, and Y. M. Abd-Elhakim. 2021. Iprodione and chlorpyrifos induce testicular damage, oxidative stress, apoptosis and suppression of steroidogenic-and spermatogenic-related genes in immature male albino rats. Andrologia 53:e13978. doi:10.1111/and.13978.
  • Henny, C. J., R. A. Grove, J. L. Kaiser, and B. L. Johnson. 2010. North American osprey populations and contaminants: Historic and contemporary perspectives. J. Toxicol. Environ. Health B 13:579–603. doi:10.1080/10937404.2010.538658.
  • Hjorth, K., K. Johansen, B. Holen, A. Andersson, H. B. Christensen, K. Siivinen, and M. Toome. 2011. Pesticide residues in fruits and vegetables from South America–A Nordic project. Food Control 22:1701–06. doi:10.1016/j.foodcont.2010.05.017.
  • Irie, N., and S. Kuratani. 2014. The developmental hourglass model: A predictor of the basic body plan? Development 141:4649–55. doi:10.1242/dev.107318.
  • Jaacks, L. M., N. Diao, A. M. Calafat, M. Ospina, M. Mazumdar, M. O. S. I. Hasan, R. Wright, Q. Quamruzzaman, and D. C. Christiani. 2019. Association of prenatal pesticide exposures with adverse pregnancy outcomes and stunting in rural Bangladesh. Environ. Int. 133:105243. doi:10.1016/j.envint.2019.105243.
  • Jackson, C. C., H. V. Rupasinghe, T. Ayanbadejo, P. Martos, and J. Schooley. 2004. Assessment of Ontario-grown ginseng (Panax quinquefolius L.) for nutritional quality and food safety. Acta Hortic. 629:115–21. doi:10.17660/ActaHortic.2004.629.15.
  • Johansson, M., H. Piha, H. Kylin, and J. Merilä. 2006. Toxicity of six pesticides to common frog (Rana temporaria) tadpoles. Environ. Toxicol. Chem. 25:3164–70. doi:10.1897/05-685R1.1.
  • Kmecick, M., M. C. Vieira Da Costa, C. A. Oliveira-Ribeiro, and C. F. Ortolani-Machado. 2019. Morphological evidence of neurotoxic effects in chicken embryos after exposure to perfluorooctanoic acid (PFOA) and inorganic cadmium. Toxicology 427:152286. doi:10.1016/j.tox.2019.152286.
  • Korn, M. J., and K. S. Cramer. 2007. Windowing chicken eggs for developmental studies. J. Visualized Exp. 8:e306.
  • Kreutz, L. C., L. J. G. Barcellos, S. De Faria Valle, T. O. Silva, D. Anziliero, E. D. Dos Santos, M. Pivato, and R. Zanatta. 2011. Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish. Shellfish Immunol. 30:51–57. doi:10.1016/j.fsi.2010.09.012.
  • Lasram, M. M., A. B. Annabi, R. Rezg, N. Elj, S. Slimen, A. Kamoun, S. El-fazaa, and N. Gharbi. 2008. Effect of short-time malathion administration on glucose homeostasis in Wistar rat. Pestic. Biochem. Physiol. 92:114–19. doi:10.1016/j.pestbp.2008.06.006.
  • Leão, M. B., D. F. Gonçalves, G. M. Miranda, G. M. Da Paixão, and C. L. Dalla Corte. 2019. Toxicological evaluation of the herbicide Palace® in Drosophila melanogaster. J. Toxicol. Environ. Health A 82:1172–85. doi:10.1080/15287394.2019.1709109.
  • Lenkowski, J. R., G. Sanchez-Bravo, and K. A. McLaughlin. 2010. Low concentrations of atrazine, glyphosate, 2, 4-dichlorophenoxyacetic acid, and triadimefon exposures have diverse effects on Xenopus laevis organ morphogenesis. J. Environ. Sci. 22:1305–08. doi:10.1016/S1001-0742(09)60254-0.
  • Loutfy, N., F. Malhat, E. Kamel, and A. Saber. 2015. Residual pattern and dietary intake of iprodione on grapes under Egyptian field conditions: A prelude to risk assessment profile. Hum. Ecol. Risk Assess. 21:265–79. doi:10.1080/10807039.2014.909206.
  • Lu, W. H., Y. X. Shi, Z. L. Ma, G. Wang, L. Liu, M. Chuai, X. Song, A. Münsterberg, L. Cao, and X. Yang. 2016. Proper autophagy is indispensable for angiogenesis during chick embryo development. Cell Cycle 15:1742–54. doi:10.1080/15384101.2016.1184803.
  • Maskey, E., H. Crotty, T. Wooten, and I. A. Khan. 2019. Disruption of oocyte maturation by selected environmental chemicals in zebrafish. Toxicol. Vitro 54:123–29. doi:10.1016/j.tiv.2018.09.017.
  • Mishra, A., and Y. Devi. 2014. Histopathological alterations in the brain (Optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide chlorpyrifos. Acta Histochem. 116:176–81. doi:10.1016/j.acthis.2013.07.001.
  • Mitkovska, V., and T. Chassovnikarova. 2020. Chlorpyrifos levels within permitted limits induce nuclear abnormalities and DNA damage in the erythrocytes of the common carp. Environ. Sci. Pollut. Res. 27:7166–76. doi:10.1007/s11356-019-07408-9.
  • Mobarak, Y. M., and M. A. Al-Asmari. 2011. Endosulfan impacts on the developing chick embryos: Morphological, morphometric and skeletal changes. Int. J. Zool. Res. 7:107–27. doi:10.3923/ijzr.2011.107.127.
  • Moore, K. L., T. V. N. Persaud, and M. G. Torchia. 2016. The developing human: Clinically oriented embryology. 10th ed. Philadelphia, PA: Elsevier.
  • Moreira, J. C., S. C. Jacob, F. Peres, J. S. Lima, A. Meyer, J. J. Oliveira-Silva, P. N. Sarcinelli, D. F. Batista, M. Egler, M. V. C. Faria, et al. 2002. Avaliação integrada do impacto do uso de agrotóxicos sobre a saúde humana em uma comunidade agrícola de Nova Friburgo, RJ. Ciência E Saúde Coletiva 7:299–311. doi:10.1590/S1413-81232002000200010.
  • Mukherjee, I., M. Gopal, and S. C. Chatterjee. 2003. Persistence and effectiveness of iprodione against alternaria blight in mustard. Bull. Environ. Contam. Toxicol. 70:0586–91. doi:10.1007/s00128-003-0025-1.
  • National Human Genome Research Institute. Researchers compare chicken, human genomes: Analysis of first avian genome uncovers differences between birds and mammals. Last Modified December 8, 2004. Accessed January 11, 2018. https://www.genome.gov/12514316/2004-release-researchers-compare-chicken-human-genomes/2004-release-researcherscompare-chicken-human-genomes/
  • Ngan, P. V., V. Gomes, M. J. A. C. R. Passos, K. A. Ussami, D. Y. F. Campos, A. J. S. Rocha, and B. A. Pereira. 2007. Biomonitoring of the genotoxic potential (micronucleus and erythrocyte nuclear abnormalities assay) of the Admiralty Bay water surrounding the Brazilian Antarctic Research Station “Comandante Ferraz”, King George Island. Polar Biol. 30:209–17. doi:10.1007/s00300-006-0174-x.
  • Nitu, K., L. Shahani, N. Taparia, and P. Bhatnagar. 2012. Teratogenic and biochemical effects of a formulation containing dicofol in the chick embryo. Toxicol. Environ. Chem. 94:1411–21. doi:10.1080/02772248.2012.705287.
  • Olsvik, P. A., F. Kroglund, B. Finstad, and T. Kristensen. 2010. Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo salar L.) smolt. Ecotoxicol. Environ. Saf. 73:1852–61. doi:10.1016/j.ecoenv.2010.07.017.
  • Omirou, M., Z. Vryzas, E. Papadopoulou-Mourkidou, and A. Economou. 2009. Dissipation rates of iprodione and thiacloprid during tomato production in greenhouse. Food Chem. 116:499–504. doi:10.1016/j.foodchem.2009.03.007.
  • OPAS/OMS. 1996. Manual de vigilância da saúde de populações expostas a agrotóxicos. Organização Panamericana da Saúde/Organização Mundial da Saúde. Accessed January 12, 2020. http://bvsms.saude.gov.br/bvs/publicacoes/livro2.pdf.
  • Palmer, A. R., and C. Strobeck. 1986. Fluctuating asymmetry: Measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421. doi:10.1146/annurev.es.17.110186.002135.
  • Pamanji, R., M. S. Bethu, B. Yashwanth, S. Leelavathi, and J. V. Rao. 2015. Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos. Environ. Sci. Pollut. Res. 22:7744–53. doi:10.1007/s11356-015-4120-8.
  • Pandey, S. P., and B. Mohanty. 2017. Disruption of the hypothalamic-pituitary-thyroid axis on co-exposures to dithiocarbamate and neonicotinoid pesticides: Study in a wildlife bird, Amandava amandava. Neurotoxicology 60:16–22. doi:10.1016/j.neuro.2017.02.010.
  • Pareja, L., A. R. Fernández-Alba, V. Cesio, and H. Heinzen. 2011. Analytical methods for pesticide residues in rice. Trends Anal. Chem. 30:270–91. doi:10.1016/j.trac.2010.12.001.
  • Petrovova, E., K. Vdoviaková, J. Danko, L. Kresakova, and M. Maloveska. 2016. Body weight and malformations in relation to pesticide embryotoxicity. Int. J. Appl. Chem. 12:811–16.
  • Pough, F. H., C. M. Janis, and J. B. Heiser. 2008. Vertebrate life. 4th ed. São Paulo: Atheneu Editora São Paulo.
  • Quintaneiro, C., A. M. V. M. Soares, and M. S. Monteiro. 2018. Effects of the herbicides linuron and S-metolachlor on Perez’s frog embryos. Chemosphere 194:595–601. doi:10.1016/j.chemosphere.2017.11.171.
  • Radice, S., M. Ferraris, L. Marabini, S. Grande, and E. Chiesara. 2001. Effect of iprodione, a dicarboximide fungicide, on primary cultured rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol 54:51–58. doi:10.1016/S0166-445X(00)00175-2.
  • Rao, J. V., A. N. Swamy, S. Yamin, S. H. Rao, and M. F. Rahman. 1992. Teratism induced in the developing chick by RPR-V, an organophosphate. Food Chem. Toxicol. 30:945–51. doi:10.1016/0278-6915(92)90179-O.
  • Relyea, R. A. 2012. New effects of Roundup on amphibians: Predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecol. Appl. 22:634–47. doi:10.1890/11-0189.1.
  • Roopadevi, Y. S., H. D. Narayanaswamy, N. Chandrashekhara, and M. L. Sathyanarayana. 2012. Studies on pathology of chlorpyriphos toxicity in chick embryos. J. Cell Tissue Res. 12:3307.
  • Sabir, S., M. S. Ansari, M. N. Abbas, R. Iqbal, J. Iqbal, S. Kausar, and S. Chaudhary. 2015. Teratological effects of Dimethoate on 12th day desi chick embryo (Gallus gallus domesticus). Biol. Sci. PJSIR 58:159–64.
  • Saganuwan, S. A. 2017. Toxicity studies of drugs and chemicals in animals: An overview. Bulg. J. Vet. Med. 20:291–318.
  • Sarty, K. I., A. Cowie, and C. J. Martyniuk. 2017. The legacy pesticide dieldrin acts as a teratogen and alters the expression of dopamine transporter and dopamine receptor 2a in zebrafish (Danio rerio) embryos. Comp. Biochem. Physiol. Part C 194:37–47.
  • Schaumburg, L. G., P. A. Siroski, G. L. Poletta, and M. D. Mudry. 2016. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos. Pestic. Biochem. Physiol. 130:71–78. doi:10.1016/j.pestbp.2015.11.009.
  • Schoenwolf, G. C. 1999. The avian embryo: A model for descriptive and experimental embryology. In Cell lineage and fate determination, ed. S. A. Moody, 429–36. 1st ed. San Diego: Academic Press.
  • Schoenwolf, G. C. 2018. Contributions of the chick embryo and experimental embryology to understanding the cellular mechanisms of neurulation. Int. J. Dev. Biol. 62:49–55. doi:10.1387/ijdb.170288gs.
  • Shi, Q., and R. W. King. 2005. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–42. doi:10.1038/nature03958.
  • SINDIVEG. 2020. O que você precisa saber sobre defensívos agrícolas. Sindicato Nacional da Indústria de Produtos para Defesa Vegetal, August. Accessed October 28, 2020. https://sindiveg.org.br/wp-content/uploads/2020/08/SINDIVEG_Paper_REV_FINAL_2020_bxresolucao.pdf
  • Skeffington, K. L., C. Beck, N. Itani, and D. A. Giussani. 2018. Isolating the direct effects of adverse developmental conditions on in vivo cardiovascular function at adulthood: The avian model. J. Dev. Orig. Health Dis. 9:460–66. doi:10.1017/S2040174418000247.
  • Slimani, S., S. Hamouda, C. Souadi, S. Silini, C. Abdennour, and L. Delimi. 2018. The fungicide thiram may disrupt reproductive cycle of domestic male pigeon (Columba livia domestica) subjected to a long photoperiod. Pak. J. Zool. 50:1693–701. doi:10.17582/journal.pjz/2018.50.5.1693.1701.
  • Soni, I., F. Syed, P. Bhatnagar, and R. Mathur. 2011. Perinatal toxicity of cyfluthrin in mice: Developmental and behavioral effects. Hum. Exp. Toxicol. 30:1096–105. doi:10.1177/0960327110391386.
  • Stanic, K., N. Saldivia, B. Förstera, M. Torrejón, H. Montecinos, and T. Caprile. 2016. Expression patterns of extracellular matrix proteins during posterior commissure development. Front Neuroanat. 10:89. doi:10.3389/fnana.2016.00089.
  • Terheyden-Keighley, D., B. Brand-Saberi, and C. Theiss. 2017. Real-time imaging of accessible axon guidance assays in three-dimensional culture. J. Neurol. Exp. Neurosci. 2:34–39.
  • Upadhyay, J., M. Rana, V. Juyal, A. Rana, and S. S. Bisht. 2017. Effect of pesticide exposure on the female rats and their pups throughout their gestation period. Res. J. Pharm. Technol. 10:2535–37. doi:10.5958/0974-360X.2017.00448.6.
  • Valen, L. V. 1962. A study of fluctuating asymmetry. Evolution 16:125–42. doi:10.1111/j.1558-5646.1962.tb03206.x.
  • Velmurugan, G., T. Ramprasath, K. Swaminathan, G. Mithieux, J. Rajendhran, M. Dhivakar, A. Parthasarathy, D. D. V. Babu, L. J. Thumburaj, A. J. Freddy, et al. 2017. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome. Biol. 18:8. doi:10.1186/s13059-016-1134-6.
  • Wang, X., G. Xu, F. Wang, H. Sun, and Y. Li. 2012. Iprodione residues and dissipation rates in tobacco leaves and soil. Bull. Environ. Contam. Toxicol. 89:877–81. doi:10.1007/s00128-012-0783-8.
  • Wang, Y., S. Wu, J. Chen, C. Zhang, Z. Xu, G. Li, L. Cai, W. Shen, and Q. Wang. 2018. Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints. Chemosphere 192:14–23. doi:10.1016/j.chemosphere.2017.10.129.
  • Wei, Y., Y. Meng, Y. Huang, Z. Liu, K. Zhong, J. Ma, W. Zhang, Y. Li, and H. Lu. 2021. Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. Chemosphere 263:127860. doi:10.1016/j.chemosphere.2020.127860.
  • Wolujewicz, P., and M. E. Ross. 2019. The search for genetic determinants of human neural tube defects. Curr. Opin. Pediatr. 31:739–46. doi:10.1097/MOP.0000000000000817.
  • Yashwanth, B., R. Pamanji, and J. V. Rao. 2016. Toxicomorphomics and toxicokinetics of quinalphos on embryonic development of zebrafish (Danio rerio) and its binding affinity towards hatching enzyme, ZHE1. Aquat. Toxicol 180:155–63. doi:10.1016/j.aquatox.2016.09.018.
  • Zhu, X. Y., B. Xia, Y. Y. Wu, H. Yang, C. Q. Li, and P. Li. 2019. Fenobucarb induces heart failure and cerebral hemorrhage in zebrafish. Aquat. Toxicol 209:34–41.
  • Zuber, M. E., G. Gestri, A. S. Viczian, G. Barsacchi, and W. A. Harris. 2003. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130:5155–67. doi:10.1242/dev.00723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.