307
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Modulating effect of DL-kavain on the mutagenicity and carcinogenicity induced by doxorubicin in Drosophila melanogaster

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abraham, S. K. 1994. Antigenotoxicity of coffee in the Drosophila assay for somatic mutation and recombination. Mutagenesis 9:383–86. doi:10.1093/mutage/9.4.383.
  • Adesola, R. O., J. T. Lawal, and O. E. Oladele. 2021. Drosophila melanogaster (Meigen, 1830): A potential model for human diseases. World News Nat. Sci. Int. Sci. J 36:42–59.
  • Alaraby, M., B. Annangi, R. Marcos, and A. Hernandez. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. J Toxicol Environ Health B 19:65–104. doi:10.1080/10937404.2016.1166466.
  • Amorim, É. M., S. L. Santana, A. S. Silva, N. C. Aquino, E. R. Silveira, R. M. Ximenes, and C. Rohde. 2019. Genotoxic assessment of the dry decoction of Myracrodruon urundeuva Allemão (Anacardiaceae) leaves in somatic cells of Drosophila melanogaster by the comet and SMART Assays. Environ. Mol. Mutagen. doi:10.1002/em.22332.
  • Anke, J., and I. Ramzan. 2004. Pharmacokinetic and pharmacodynamic drug interactions with Kava (Piper methysticum Forst f. J. Ethnopharmacol 93:153–60. doi:10.1016/j.jep.2004.04.009.
  • Antunes, L. M. G., and C. S. Takahashi. 1998. Effects of high doses of vitamins C and E against doxorrubicin – Induced chomosomal damage in Wistar rat bone marrow cells. Mutat. Res./Genet. Toxicol. Environ. Mutagen 419:137–43. doi:10.1016/S1383-5718(98)00134-X.
  • Aporosa, S. A., M. Atkins, and J. N. Leov. 2021. Decolonising quantitative methods within a Pacific research space to explore cognitive effects following kava use. J. Interdiscip. Res 5:74–92. doi:10.26021/10642.
  • Baldridge, D., M. F. Wangler, A. N. Bowman, S. Yamamoto, T. Schedl, S. C. Pak, J. H. Postlethwait, J. Shin, L. Solnica-Krezel, H. J. Bellen, et al.. 2021. Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: Current state and a future vision. Orphanet J. Rare Dis 16:206. doi:10.1186/s13023-021-01839-9.
  • Bale, A. S., E. Kenyon, T. J. Flynn, J. C. Lipscomb, D. L. Mendrick, T. Hartung, and G. W. Patton. 2014. Correlating in vitro data to in vivo find for risk assessment. Altern. Animal Exp 31:79–90. doi:10.14573/altex.1310011.
  • Bian, T., P. Corral, Y. Wang, J. Botello, R. Kingston, T. Daniels, R. G. Salloum, E. Johnston, Z. Huo, J. Lu, et al.. 2020. Kava as a clinical nutrient: Promises and challenges. Nutrients 12:3044. doi:10.3390/nu12103044..
  • Bisneto, A. V. M., L. C. Oliveira, A. S. Fernandes, L. S. Silva, J. H. Veras, C. G. Cardoso, C. R. Silva, A. V. M. Filho, C. C. Carneiro, and -C.-C. Lee. 2021. Recombinogenic, genotoxic and cytotoxic effects of azathioprine using in vivo assays. J. Toxicol. Saúde Ambient. Parte A 84:261–71. doi:10.1080/15287394.2020.1864692.
  • Carmona, E. R., M. Reyes-Díaz, J. Parodi, and C. Inostroza-Blancheteau. 2017. Antimutagenic evaluation of traditional medicinal plants from South America Peumus boldus and Cryptocarya alba using Drosophila melanogaster. J Toxicol Environ Health A. 80:208–17. doi:10.1080/15287394.2017.1279574.
  • Celentano, A., C. Yiannis, R. Paolini, P. Zhang, C. S. Farah, N. Cirillo, T. Yap, and M. McCullough. 2020. Kava constituents exert selective anticancer effects in oral squamous cell carcinoma cells in vitro. Sci. Rep. 10:15904. doi:10.1038/s41598-020-73058-4.
  • Chahine, N., and R. Chahine. 2020. Protecting mechanisms of saffron extract against doxorubicin toxicity in ischemic heart. Saffron 12:141–54. doi:10.1016/b978-0-12-818462-2.00012-7.
  • Chua, H. C., E. T. H. Christensen, K. H. Jesen, L. Y. Hartiadi, I. Ramzan, A. A. Jesen, N. L. Absalom, and M. Chebib. 2016. Kavain, the major constituent of the anxiolytic kava extract, potentiates GABAA receptors: Functional characteristics and molecular mechanism. PLoS ONE 11:e0157700. doi:10.1371/journal.pone.0157700.
  • Costa, W. F., and J. C. Nepomuceno. 2006. Protective effects of a mixture of antioxidant vitamins and mineral on the genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Environ. Mol. Mutagen. 47:18–24. doi:10.1002/em.20160.
  • De Rezende, A. A. A., C. C. Munari, P. F. Oliveira, N. H. Ferreira, D. C. Tavares, S. M. L. Andrade, N. H. Rezende, and M. A. A. Spanó. 2013. A comparative study of the modulatory effects of (−)-cubebin on the mutagenicity/recombinogenicity induced by different chemical agents. Food Chem. Toxicol 55:645–52. doi:10.1016/j.fct.2013.01.050.
  • De Rezende, A. A. A., M. L. A. Silva, D. C. Tavares, W. R. Cunha, K. C. S. Rezende, J. K. Bastos, M. A. Spanó, H. H. R. de Andrade, Z. R. Guterres, and L. P. Silva. 2011. The effect of the dibenzylbutyrolactoliclignan (-)-cubebin on doxorubicin mutagenicity and recombinogenicity in wing somatic cells of . Drosophila Melanogaster. Food Chem. Toxicol 49:1235–41. doi:10.1016/j.fct.2011.03.001.
  • Ertuğrul, H., B. Yalçın, M. Güneş, and B. Kaya. 2019. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug Chem. Toxicol 43:279–86. doi:10.1080/01480545.2019.1585444.
  • Ferreira, J. V., A. V. Braga, R. R. Machado, D. Michel, G. A. Pianetti, A. El-Aneed, and I. C. César. 2019. Liquid chromatography-tandem mass spectrometry bioanalytical method for the determination of kavain in mice plasma: Application to a pharmacokinetic study. J. Chromatogr. B 1137:121939. doi:10.1016/j.jchromb.2019.121939.
  • Frei, H., and F. E. Würgler. 1988. Statistical methods to decide whether mutagenicity test data from Drosophila assay indicate a positive, negative, or inconclusive result. Mutat. Res./Genet. Toxicol. Environ. Mutagen 203:297–308. doi:10.1016/0165-1161(88)90019-2.
  • Frei, H., and F. E. Würgler. 1995. Optimal experimental design and sample size for the evaluation of data from somatic mutation and recombination test (SMART). In Drosophila. Mutat. Res./Genet. Toxicol. Environ. Mutagen 334:247–58. doi:10.1016/0165-1161(95)90018-7.
  • Freitas, K. S., . I. S., N. Squarisi, H. D. O Acésio, S. D. Nicolella, M. R. S. Ozelin, A. P. P. Melo, G. Guissone, L. M. Fernandes, A. A. S. Silva, A. V. M. Filho, et al.. 2020. Licochalcone A, a licorice flavonoid: Antioxidant, cytotoxic, genotoxic, and chemopreventive potential. J. Toxicol. Environ. Health A 83:673–86. doi:10.1080/15287394.2020.1813228.
  • Frölich, A., and F. E. Würgler. 1989. New tester strains with improved bioactivation capacity for the Drosophila wing-spot test. Mutat. Res./Genet. Toxicol. Environ. Mutagen 216:179–87. doi:10.1016/0165-1161(89)90003-4.
  • Gleitz, J., A. Beile, P. Wilkens, A. Ameri, and T. Peters. 1997. Antithrombotic action of the kava pyrone (+)-kavain prepared from Piper methysticum on human platelets. Planta Med. 63:27–30. doi:10.1055/s-2006-957597.
  • Gleitz, J., J. Friese, A. Beile, A. Ameri, and T. Peters. 1996. Anticonvulsive action of (±)-kavain estimated from its properties on stimulated synaptosomes and Na+ channel receptor sites. Eur. J. Pharmacol 315:89–97. doi:10.1016/S0014-2999(96)00550-X.
  • Graf, U., and F. E. Würgler. 1996. The somatic white-ivory eye spot test does not detect the same spectrum of genotoxic events as the wing somatic mutation and recombination test in Drosophila melanogaster. Environ. Mol. Mutagen 27:219–26. doi:10.1002/(SICI)1098-2280(1996)27:3<219::AID-EM7>3.0.CO;2-9.
  • Graf, U., F. E. Würgler, A. J. Katz, H. Frei, H. Juon, C. B. Hall, and P. G. Kale. 1984. Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mutagen. 6:153–88. doi:10.1002/em.2860060206.
  • Graf, U., and N. Schaik. 1992. Improved high bioactivation cross for the wing somatic mutation and recombination test in Drosophila melanogaster. Mutat. Res. Environ. Mutagen. Relat. Subj 271:59–67. doi:10.1016/0165-1161(92)90032-H.
  • Grunze, H., J. Langosch, K. Schirrmacher, D. Bingmann, J. Von Wegerer, and J. Walden. 2001. Kava pyrones exert effects on neuronal transmission and transmembraneous cation currents similar to established mood stabilizers - a review. Prog. Neuro-Psychopharmacol. Biol. Psychiat 25:1555–70. doi:10.1016/S0278-5846(01)00208-1.
  • Guerra-Santos, I. J., J. D. Rocha, C. R. Vale, W. C. Sousa, A. M. Teles, L. Chen-Chen, S. Carvalho, and E. F. L. C. Bailão. 2016. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp. Braz. J. Biol 76:928–36. doi:10.1590/1519-6984.04615.
  • Keizer, H. G., H. M. Pinedo, G. J. Schuurhuis, and H. Joenje. 1990. Doxorubicin (adriamycin): A critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol. Ther 47:219–31. doi:10.1016/0163-7258(90)90088-J.
  • Köppel, C., and J. Tenczer. 1991. Mass spectral characterization of urinary metabolites of D,L-kawain. J. Chromatogr. B: Biomed. Sci. Appl 562:207–11. doi:10.1016/0378-4347(91)80578-Z.
  • Kormann, E. C., P. A. Amaral, M. David, V. L. E. Lima, V. C. Filho, and F. C. Buzzi. 2012. Kavain analogues as potential analgesic agents. Pharmacol. Rep 64:1419–26. doi:10.1016/s1734-1140(12)70939-8.
  • Kuchta, K., M. Schmidt, and A. Nahrstedt. 2015. German kava ban lifted by court: The alleged hepatotoxicity of kava (Piper methysticum) as a case of Ill-defined herbal drug identity, lacking quality control, and misguided regulatory politics. Planta Med. 81:1647–53. doi:10.1055/s-0035-1558295.
  • Lebot, V., J. Kaoh, and L. Legendre. 2020. High-throughput analysis of flavokawains in kava (Piper methysticum Forst. f.) roots, chips and powders and correlations with their acetonic extracts absorbance. Food Anal. Meth 13 (8):1583–93. doi:10.1007/s12161-020-01781-9.
  • Lebot, V., and J. Lévesque. 1989. The origin and distribution of kava (Piper Methysticum Forst. F., piperaceae): A phytochemical approach. Allertonia 5:223–81.
  • Lehmann, M., A. Franco, K. S. P. Vilar, M. L. Reguly, and H. H. R. Andrade. 2003. Doxorubicin and two of its analogues are preferential inducers of homologous recombination compared with mutational events in somatic cells of Drosophila melanogaster. Mutat. Res./Genet. Toxicol. Environ. Mutagen 539:167–75. doi:10.1016/S1383-5718(03)00162-1.
  • Lenz, S. P., J. B. Karsten, Schulz, A. Voigt, and J. B. Schulz. 2013. Drosophila as a screening tool to study human neurodegenerative diseases. J. Neurochem 127:452–60. doi:10.1111/jnc.12446.
  • Li, X., Z. Liu, X. Xu, C. A. Blair, Z. Sun, J. Xie, M. B. Lilly, and X. Zi. 2012. Kava components down-regulate expression of AR and AR splice variants and reduce growth in patient derived prostate cancer xenografts in mice. PLoS ONE 7:e31213. doi:10.1371/journal.pone.0031213.
  • Lobo, V., A. Patil, A. Phatak, and N. Chandra. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacog. Rev 4:118–26. doi:10.4103/0973-7847.70902.
  • Martin, A. C., E. Johnston, C. Xing, and A. D. Hegeman. 2014. Measuring the chemical and cytotoxic variability of commercially available kava (Piper methysticum G. Forster). PLoS ONE 9:e111572. doi:10.1371/journal.pone.0111572.
  • Mathews, J. M., A. S. Etheridge, J. L. Valentine, S. R. Black, D. P. Coleman, P. Patel, J. So, and L. T. Burka. 2005. Pharmacokinetics and disposition of the kavalactone kawain. Interaction with Kava Extract and Kavalactones in Vivo and in Vitro. Drug Metab. Dispos 33:1555–63. doi:10.1124/dmd.105.004317.
  • Mathews, J. M., A. S. Etheridge, and S. R. Black. 2002. Inhibition of human Cytochrome P450 activities by kava extract and kavalactones. Drug Metab. Dispos 30:1153–57. doi:10.1124/dmd.30.11.1153.
  • Mattes, W. B. 2020. In vitro to in vivo translation. Curr. Opin. Toxicol 23–24:114–18. doi:10.1016/j.cotox.2020.09.001.
  • Meigen, J. W. 1830. Systematische Beschreibung der bekannten europäischen zweiflügeligen Insekten. Schulzische Buchhandlung, Hamm. Vol. 6.
  • Mirzoyan, Z., M. Sollazzo, M. Allocca, A. M. Valenza, D. Grifoni, and P. Bellosta. 2019. Drosophila melanogaster: A model organism to study cancer. Front. Genet 10:51. doi:10.3389/fgene.2019.00051.
  • Morais, C. R., A. M. Bonetti, S. M. Carvalho, A. A. A. Rezende, G. R. Araujo, and M. A. Spanó. 2016. Assessment of mutagenic, recombinogenic and carcinogenic potential of fipronil insecticide in somatic cells of Drosophila melanogaster. Chemosphere 165:342e351. doi:10.1016/j.chemosphere.2016.09.023.
  • Naves, M. P. C., C. R. Morais, A. C. A. Silva, N. O. Dantas, M. A. Spanó, and A. A. A. De Rezende. 2018. Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food Chem. Toxicol. 112:273–81. doi:10.1016/j.fct.2017.12.040.
  • Neafsey, P., G. Ginsberg, D. Hattis, and B. Sonawane. 2009. Genetic polymorphism in Cytochrome P450 2D6 (CYP2D6): Population distribution of CYP2D6 activity. J. Toxicol. Environ. Health B 12:334–61. doi:10.1080/10937400903158342.
  • Olsen, L., C. Ostenbrink, and F. S. Jorgensen. 2015. Prediction of cytochrome P450 mediated metabolism. Adv. Drug Delivery Rev 86:61–71. doi:10.1016/j.addr.2015.04.020.
  • Ooi, S. L., P. Henderson, and S. C. Pak. 2018. Kava for generalized anxiety disorder: A review of current evidence. J. Altern. Complemento. Med 24:770–80. doi:10.1089/acm.2018.0001.
  • Orsolin, P. C., R. G. S. Oliveira, and J. C. Nepomuceno. 2012. Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster. Food Chem. Toxicol. 50:2598–604. doi:10.1016/j.fct.2012.05.008.
  • Oshima-Franco, Y., and L. M. Franco. 2003. Biotransformação: Importância e toxicidade. Saúde Em Rev 5:69–76.
  • Pandey, U. B., and C. D. Nichols. 2011. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev 63:411–36. doi:10.1124/pr.110.003293.
  • Pedrosa, E. C. G. A., A. P. C. Bezerra, I. M. Costa, F. I. Pinheiro, and F. P. Guzen. 2020. Neuroprotective profile of Piper Methysticum (Kava Kava) and its effects on the central nervous system: A systematic review. J. Pharmacol. Chem. Biol. Sci 2:55–84. doi:10.36619/jpcbs.2020.2.56.80.
  • Perdomo, R. T., C. P. Defende, P. S. Mirowski, T. V. Freire, S. S. Weber, W. S. Garcez, Z. R. Guterres, M. F. C. Matos, and F. R. Garcez. 2020. Myricitrin from Combretum lanceolatum exhibits inhibitory effect on DNA-topoisomerase type IIα and protective effect against in vivo doxorubicin-induced mutagenicity. J. Med. Food 24:273–81. doi:10.1089/jmf.2020.0033.
  • Prinsloo, D., S. V. Dyk, A. Petzer, and J. P. Petzer. 2019. Monoamine oxidase inhibition by kavalactones from kava (Piper Methysticum). Planta Med. 85:1136–42. doi:10.1055/a-1008-9491.
  • Santana, S. L., C. J. Verçosa, I. F. A. Castro, É. M. Amorim, A. S. Silva, T. M. R. Bastos, L. J. S. Neto, T. O. Santos, E. J. França, and C. Rohde. 2018. Drosophila melanogaster as model organism for monitoring and analyzing genotoxicity associated with city air pollution. Environ. Sci. Pollut. Res 25:32409–17. doi:10.1007/s11356-018-3186-5.
  • Shaik, A. A., D. L. Hermanson, and C. Xing. 2009. Identification of methysticin as a potent and non-toxic NF-κB inhibitor from kava, potentially responsible for kava’s chemopreventive activity. Bioorg. Med. Chem. Lett 19:5732–36. doi:10.1016/j.bmcl.2009.08.003.
  • Sharma, V., R. Madaan, R. Bala, A. Goyal, and R. K. Sindhu. 2021. Pharmacodynamic and pharmacokinetic interactions of herbs with prescribed drugs: A review. Plant Arch 21:185–98. doi:10.51470/PLANTARCHIVES.2021.v21.S1.033.
  • Showman, A. F., J. D. Baker, C. Linares, K. C. Naeole, R. Borris, E. Johnston, J. Konanui, and H. Turner. 2015. Contemporary Pacific and Western perspectives on `awa (Piper methysticum) toxicology. Fitoterapia 100:56–67. doi:10.1016/j.fitote.2014.11.012.
  • Siddique, H. R., D. K. Chowdhuri, D. K. Saxena, and A. Dhawan. 2005. Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline comet assay. Mutagenesis 20:285–90. doi:10.1093/mutage/gei032.
  • Singh, S. P., O. Huck, N. G. Abraham, and S. Amar. 2018. Kavain reduces Porphyromonas gingivalis–induced adipocyte inflammation: Role of PGC-1α signaling. J. Immunol 201:1491–99. doi:10.4049/jimmunol.1800321.
  • Smith, K. K., H. R. W. Dharmaratne, M. W. Feltenstein, S. L. Broom, J. T. Roach, N. P. D. Nanayakkara, I. A. Khan, and K. J. Sufka. 2001. Anxiolytic effects of kava extract and kavalactones in the chick social separation-stress paradigm. Psychopharmacology 155:86–90. doi:10.1007/s002130100686..
  • Tacar, O., P. Sriamornsak, and C. R. Dass. 2012. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol 65:157–70. doi:10.1111/j.2042-7158.2012.01567.x.
  • Tang, X., and S. Amar. 2016. Kavain inhibition of LPS-induced TNF-α via ERK/LITAF. Toxicol. Res 5:188–96. doi:10.1039/c5tx00164a.
  • Tarbah, F., H. Mahler, B. Kardel, W. Weinmann, D. Hafner, and T. H. Daldrup. 2003. Kinetics of kavain and its metabolites after oral application. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 789:115–30. doi:10.1016/s1570-0232(03)00046-1.
  • Tarbah, F. A., H. Mahler, O. Temme, and T. Daldrup. 2000. Mass spectral characterisation of hepatic cell metabolites of D,L-kavain using HPLC and GC/MS systems. Probl. Forensic Sci 42:173–80.
  • Teschke, R., J. Sarris, and V. Lebot. 2011. Kava hepatotoxicity solution: A six-point plan for new kava standardization. Phytomedicine 18:96–103. doi:10.1016/j.phymed.2010.10.002.
  • Teschke, R., and V. Lebot. 2011. Proposal for a kava quality standardization code. Food Chem. Toxicol 49:2503–16. doi:10.1016/j.fct.2011.06.075.
  • Thomsen, M., and M. Schmidt. 2021. Health policy versus Kava (Piper methysticum): Anxiolytic efficacy may be instrumental in restoring the reputation of a major South Pacific crop. J.Ethnopharmacol268: 113582. doi:10.1016/j.jep.2020.113582.
  • Unger, M., U. Holzgrabe, W. Jacobsen, C. Cummins, and L. Z. Benet. 2002. Inhibition of Cytochrome P450 3A4 by extracts and kavalactones of Piper methysticum (Kava-Kava). Planta Med. 68:1055–58. doi:10.1055/s-2002-36360.
  • Upadhyay, A., E. Tuenter, R. Ahmad, A. Amin, V. Exarchou, S. Apers, N. Hermans, and L. Pieters. 2014. Kavalactones, A novel class of protein glycation and lipid peroxidation inhibitors. Planta Med. 80:1001–08. doi:10.1055/s-0034-1382949.
  • Vasconcelos, M. A., P. C. Orsolin, V. C. Oliveira, P. M. A. P. Lima, M. P. C. Naves, C. R. Morais, N. Nicolau-Júnior, A. M. Bonetti, and M. A. Spano. 2020. Modulating effect of vitamin D3 on the mutagenicity and carcinogenicity of doxorubicin in Drosophila melanogaster and in silico studies. Food Chem. Toxicol 143:111549. doi:10.1016/j.fct.2020.111549.
  • Venancio, V. P., M. C. Marques, M. R. Almeida, L. R. B. Mariutti, C. C. O. Souza, F. Barbosa, M. L. P. Bianchi Jr, C. M. Marzocchi, A. Z. Machado, Antunes, et al.. 2016. Chrysobalanus icaco L. fruits inhibit NADPH oxidase complex and protect DNA against doxorubicin-induced damage in Wistar male rats. J. Toxicol. Environ. Health A 79:885–93. doi:10.1080/15287394.2016.1193454.
  • Véras, J. H., C. R. Do Vale, D. C. S. Lima, M. M. dos Anjos, A. Bernardes, A. V. de Moraes Filho, C. R. Silva, G. R. de Oliveira, C. N. Pérez, and L. Chen-Chen. 2020. Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster. Drug Chem. Toxicol. doi:10.1080/01480545.2020.1776314.
  • Wang, P., J. Zhu, A. I. Shehu, J. Lu, J. Chen, X. Zhong, and X. Ma. 2019. Enzymes and pathways of kavain bioactivation and biotransformation. Chem. Res. Toxicol 32:1335–42. doi:10.1021/acs.chemrestox.9b00098.
  • Wruck, C. J., M. E. Gotz, T. Herdegen, D. Varoga, L. O. Brandenburg, and T. Pufe. 2008. Kavalactones protect neural cells against amyloid peptide-induced neurotoxicity via extracellular signal-regulated kinase 1/2-dependent nuclear factor erythroid 2-related factor 2 activation. Mol. Pharmacol 73:1785–95. doi:10.1124/mol.107.042499.
  • Yiannis, C., K. Huang, A. N. Tran, C. Zeng, E. Dao, O. Baselyous, M. A. Mithwani, R. Paolini, N. Cirillo, T. Yap, et al.. 2020. Protective effect of kava constituents in an in vitro model of oral mucositis. J. Cancer Res. Clin. Oncol 146:801–11. doi:10.1007/s00432-020-03253-3.
  • Zi, X., and A. R. Simoneau. 2005. Flavokawain A, a novel chalcone from kava extract, induces apoptosis in bladder cancer cells by involvement of Bax protein-dependent and mitochondria-dependent apoptotic pathway and suppresses tumor growth in mice. Cancer Res. 65:3479–86. doi:10.1158/0008-5472.can-04-3803.
  • Zou, L., G. L. Henderson, M. R. Harkey, Y. Sakai, and A. Li. 2004. Effects of kava (Kava-kava, ’Awa, Yaqona, Piper methysticum) on c-DNA-expressed cytochrome P450 enzymes and human cryopreserved hepatocytes. Phytomedicine 11:285–94. doi:10.1078/0944711041495263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.