154
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A convenient fluorometric test method for skin sensitization using glutathione in chemico

, , & ORCID Icon

References

  • Ashikaga, T., Y. Yoshida, M. Hirota, K. Yoneyama, H. Itagaki, H. Sakaguchi, M. Miyazawa, Y. Ito, H. Suzuki, and H. Toyama. 2006. Development of an in vitro skin sensitization test using human cell lines: The human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol. In Vitro 20 (5):767–73. doi:10.1016/j.tiv.2005.10.012.
  • Bezerra, S. F., B. D. S. Rodrigues, A. C. G. Da Silva, R. I. de Ávila, H. R. G. Brito, E. R. Cintra, D. F. M. C. Veloso, E. M. Lima, and M. C. Valadares. 2021. Application of the adverse outcome pathway framework for investigating skin sensitization potential of nanomaterials using new approach methods. Contact Derm. 84 (2):67–74. doi:10.1111/cod.13669.
  • Cho, S. A., S. An, and J. H. Park. 2019. High-throughput screening (HTS)-based spectrophotometric direct peptide reactivity assay (Spectro-DPRA) to predict human skin sensitization potential. Toxicol. Lett. 314:27–36. doi:10.1016/j.toxlet.2019.07.014.
  • Dik, S., E. Rorije, P. Schwillens, H. van Loveren, and J. Ezendam. 2016. Can the direct peptide reactivity assay be used for the identification of respiratory sensitization potential of chemicals? Toxicol. Sci. 153 (2):361–71. doi:10.1093/toxsci/kfw130
  • Gerberick, F., M. Aleksic, D. Basketter, S. Casati, A. T. Karlberg, P. Kern, I. Kimber, J. P. Lepoittevin, A. Natsch, J. M. Ovigne, et al. 2008. Chemical reactivity measurement and the predicitve identification of skin sensitizers. The report and recommendations of ECVAM Workshop 64. ATLA 36 (2):215–42. doi:10.1177/026119290803600210.
  • Gerberick, G. F., C. A. Ryan, R. J. Dearman, and I. Kimber. 2007. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods 41 (1):54–60. doi:10.1016/j.ymeth.2006.07.006.
  • Gerberick, G. F., J. A. Troutman, L. M. Foertsch, J. D. Vassallo, M. Quijano, R. L. Dobson, C. Goebel, and J. P. Lepoittevin. 2009. Investigation of peptide reactivity of pro-hapten skin sensitizers using a peroxidase-peroxide oxidation system. Toxicol. Sci. 112 (1):164–74. doi:10.1093/toxsci/kfp192.
  • Guedes, S., B. Neves, R. Vitorino, R. Domingues, M. T. Cruz, and P. Domingues. 2017. Contact dermatitis: In pursuit of sensitizer’s molecular targets through proteomics. Arch. Toxicol. 91 (2):811–25. doi:10.1007/s00204-016-1714-y.
  • Guo, X., J. E. Seo, D. Petibone, V. Tryndyak, U. J. Lee, T. Zhou, T. W. Robison, and N. Mei. 2020. Performance of HepaRG and HepG2 cells in the high-throughput micronucleus assay for in vitro genotoxicity assessment. J. Toxicol. Environ. Health A 83 (21–22):702–17. doi:10.1080/15287394.2020.1822972.
  • Hartung, T., S. Bremer, S. Casati, S. Coecke, R. Corvi, S. Fortaner, L. Gribaldo, M. Halder, A. J. Roi, P. Prieto, et al.. 2003. ECVAM’s response to the changing political environment for alternatives: Consequences of the European Union chemicals and cosmetics policies. ATLA 31 (5):473–81. doi:10.1177/026119290303100504.
  • Hoffmann, S., N. Kleinstreuer, N. Alepee, D. Allen, A. M. Api, T. Ashikaga, E. Clouet, M. Cluzel, B. Desprez, N. Gellatly, et al.. 2018. Non-animal methods to predict skin sensitization (I): The Cosmetics Europe database. Crit. Rev. Toxicol. 48 (5):344–58. doi:10.1080/10408444.2018.1429385.
  • Ketterer, B., B. Coles, and D. J. Meyer. 1983. The role of glutathione in detoxication. Environ.Health Perspect. 49:59–69. doi:10.1289/ehp.834959.
  • Kim, J. Y., M. K. Kim, K.-B. Kim, H. S. Kim, and B.-M. Lee. 2019a. Quantitative structure–activity and quantitative structure–property relationship approaches as alternative skin sensitization risk assessment methods. J. Toxicol. Environ. Health A 82 (7):447–72. doi:10.1080/15287394.2019.1616437.
  • Kim, K. B., S. J. Kwack, J. Y. Lee, S. Kacew, and B. M. Lee. 2021. Current opinion on risk assessment of cosmetics. J. Toxicol. Environ. Health B 24 (4):137–61. doi:10.1080/10937404.2021.1907264.
  • Kim, M. K., K. B. Kim, H. S. Kim, and B. M. Lee. 2019b. Alternative skin sensitization prediction and risk assessment using proinflammatory biomarkers, interleukin-1 beta (IL-1β) and indicible nitric oxide synthase (iNOS). J. Toxicol. Environ. Health A 82 (5):361–78. doi:10.1080/15287394.2019.1609183.
  • Kim, M. K., K. B. Kim, K. Yoon, S. Kacew, H. S. Kim, and B. M. Lee. 2018. IL-1α and IL-1β as alternative biomarkers for risk assessment and the prediction of skin sensitization potency. J. Toxicol. Environ. Health A 81 (17):830–43. doi:10.1080/15287394.2018.1494474.
  • Kimber, I., J. Hilton, R. J. Dearman, G. F. Gerberick, C. A. Ryan, D. A. Basketter, L. Lea, R. V. House, G. S. Ladics, S. E. Loveless, et al.. 2010. Assessment of the skin sensitization potential of topical medicaments using the local lymph node assay: An interlaboratory evaluation. J. Toxicol. Environ. Health A 53:563–79.
  • Kolle, S. N., R. Landsiedel, and A. Natsch. 2020. Replacing the refinement for skin sensitization testing: Considerations to the implementation of adverse outcome pathway (AOP)-based defined approaches (DA) in OECD guidelines. Regul. Toxicol. Pharmacol. 115:104713. doi:10.1016/j.yrtph.2020.104713.
  • Kosower, E. M., and N. S. Kosower. 1995. Bromobimane probes for thiols. Meth. Enzymol. 251:133–48.
  • MacKay, C., M. Davies, V. Summerfield, and G. Maxwell. 2013. From pathways to people: Applying the adverse outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX 30 (4):473–86. doi:10.14573/altex.2013.4.473.
  • Marigliani, B., J. Silva, L. B. L. Balottin, K. R. Silva, L. S. Baptista, C. B. L. Campos, and E. F. P. Augusto. 2019. Adaptation of a skin sensitization assay to a chemically defined culture. Toxicol. In Vitro 57:145–53. doi:10.1016/j.tiv.2018.12.004.
  • Nepal, M. R., G. H. Kim, D. H. Cha, and T. C. Jeong. 2019b. Assessment of skin sensitizing potential of metals with β-galactosidase-expressing E. coli culture system. J. Toxicol. Environ Health A 82 (15):879–89. doi:10.1080/15287394.2019.1664958.
  • Nepal, M. R., K. Noh, S. Shah, G. Bist, E. S. Lee, and T. C. Jeong. 2019c. Identification of DNA and glutathione adducts in male Sprague-Dawley rats exposed to 1-bromopropane. J. Toxicol. Environ. Health A 82 (8):502–13. doi:10.1080/15287394.2019.1622830.
  • Nepal, M. R., M. J. Kang, G. H. Kim, D. H. Cha, D. H. Nam, and T. C. Jeong. 2019a. Identification of pre- and pro-haptens with a β-galactosidase-expressing E. coli culture system for skin sensitization. Toxicol. Lett. 305:81–93. doi:10.1016/j.toxlet.2019.01.015.
  • Nepal, M. R., R. Shakya, M. J. Kang, and T. C. Jeong. 2018b. A simple in chemico method for testing skin sensitizing potential of chemicals using small endogenous molecules. Toxicol. Lett. 289:75–85. doi:10.1016/j.toxlet.2018.03.006.
  • Nepal, M. R., Y. Kang, M. J. Kang, D. H. Nam, and T. C. Jeong. 2018a. A β-galactosidase-expressing E. coli culture as an alternative test to identify skin sensitizers and non-sensitizers. J. Toxicol. Environ. Health A 81 (9):288–301. doi:10.1080/15287394.2018.1440187.
  • OECD. 2010. Test No. 429: Skin sensitisation: Local lymph node assay. Paris: OECD Publishing.
  • OECD. 2015. Test No. 442C: In chemico skin sensitisation: Direct peptide reactivity assay (DPRA). Paris: OECD Publishing.
  • OECD. 2019. Performance Standards for the assessment of proposed similar or modified in vitro skin sensitisation DPRA and ADRA test methods. Paris: OECD Publishing.
  • Ramirez, T., A. Mehling, S. N. Kolle, C. J. Wruck, W. Teubner, T. Eltze, A. Aumann, D. Urbisch, B. Van Ravenzwaay, and R. Landsiedel. 2014. LuSens: A keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification. Toxicol. In Vitro 28 (8):1482–97. doi:10.1016/j.tiv.2014.08.002.
  • Rudyk, O., and P. Eaton. 2014. Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol. 2:803–13. doi:10.1016/j.redox.2014.06.005.
  • Sun, D., T. Zhao, X. Li, and Z. Zhang. 2019. Evaluation of DNA and chromosomal damage in two human HaCaT and L02 cells treated with varying triclosan concentrations. J. Toxicol. Environ Health A. 82 (7):473–82. doi:10.1080/15287394.2019.1618758.
  • Szwergold, B. S. 2006. Alpha-thiolamines such as cysteine and cysteamine act as effective transglycating agents due to formation of irreversible thiazolidine derivatives. Med. Hypotheses 66 (4):698–707. doi:10.1016/j.mehy.2005.10.029.
  • Wasel, O., K. M. Thompson, Y. Gao, A. E. Godfrey, J. Gao, C. T. Mahapatra, L. S. Lee, M. S. Sepúlveda, and J. L. Freeman. 2021. Comparison of zebrafish in vitro and in vivo developmental toxicity assessments of perfluoroalkyl acids (PFAAs). J. Toxicol. Environ. Health A 84 (3):125–36. doi:10.1080/15287394.2020.1842272.
  • Wei, Z., Y. Fang, M. L. Gosztyla, A. J. Li, W. Huang, C. A. LeClair, A. Simeonov, D. Tao, and M. Xia. 2021. A direct peptide reactivity assay using a high-throughput mass spectrometry screening platform for detection of skin sensitizers. Toxicol. Lett. 338:67–77. doi:10.1016/j.toxlet.2020.12.002.
  • Yakubu, S. I., I. A. Yakasai, and A. Musa. 2011. Spectrofluorimetric assay method for glutathione and glutathione transferase using monobromobimane. J. Basic Clin.Pharmacy 2 (3):151–58.
  • Yamamoto, Y., S. Wanibuchi, A. Sato, T. Kasahara, and M. Fujita. 2019. Precipitation of test chemicals in reaction solutions used in the amino acid derivative reactivity assay and the direct peptide reactivity assay. J. Pharmacol. Toxicol. Methods 100:106624. doi:10.1016/j.vascn.2019.106624.
  • Yang, H., D. E. Kim, W. H. Jang, S. An, S. A. Cho, M. S. Jung, J. E. Lee, K. W. Yeo, S. B. Koh, T. C. Jeong, et al.. 2017. Prevalidation trial for a novel in vitro eye irritation test using the reconstructed human cornea-like epithelial model, MCTT HCE. Toxicol. In Vitro 39:58–67. doi:10.1016/j.tiv.2016.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.