366
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Exposure to long-term evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via Akt/mTOR-mediated cellular senescence

, , , , , , , & show all

References

  • Abbas, T., and A. Dutta. 2009. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 9:400–14. doi:10.1038/nrc2657.
  • Adams, P. D. 2001. Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. BBA-Rev. Cancer 1471:M123–M133.
  • Astle, M. V., K. M. Hannan, P. Y. Ng, R. S. Lee, A. J. George, A. K. Hsu, Y. Haupt, R. D. Hannan, and R. B. Pearson. 2012. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: Implications for targeting mTOR during malignancy. Oncogene 31:1949–62. doi:10.1038/onc.2011.394.
  • Baan, R., Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, F. Islami, L. Galichet, and K. Straif. 2011. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12:624–26. doi:10.1016/S1470-2045(11)70147-4.
  • Bouji, M., A. Lecomte, C. Gamez, K. Blazy, and A. S. Villégier. 2020. Impact of cerebral radiofrequency exposures on oxidative stress and corticosterone in a rat model of Alzheimer’s disease. J. Alzheimer’s Dis. 73:467–76. doi:10.3233/JAD-190593.
  • Buttiglione, M., L. Roca, E. Montemurno, F. Vitiello, V. Capozzi, and G. Cibelli. 2007. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. J. Cell. Physiol. 213:759–67. doi:10.1002/jcp.21146.
  • Chiarle, R., M. Pagano, and G. Inghirami. 2000. The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res. 3:91. doi:10.1186/bcr277.
  • Chien, W. W., C. Domenech, R. Catallo, G. Salles, and M. Ffrench. 2010. S-phase lengthening induced by p16(INK4a) overexpression in malignant cells with wild-type pRb and p53. Cell Cycle 9:3286–96. doi:10.4161/cc.9.16.12600.
  • Choi, J., K. Min, S. Jeon, N. Kim, J. K. Pack, and K. Song. 2020. Continuous exposure to 1.7 GHz LTE electromagnetic fields increases intracellular reactive oxygen species to decrease human cell proliferation and induce senescence. Sci. Rep. 10:9238. doi:10.1038/s41598-020-65732-4.
  • Corveloni, A. C., S. C. Semprebon, A. Baranoski, B. I. Biazi, T. A. Zanetti, and M. S. Mantovani. 2020. Carnosic acid exhibits antiproliferative and proapoptotic effects in tumoral NCI-H460 and nontumoral IMR-90 lung cells. J. Toxicol. Environ. Health A 83:412–21. doi:10.1080/15287394.2020.1767741.
  • Gherardini, L., G. Ciuti, S. Tognarelli, and C. Cinti. 2014. Searching for the perfect wave: The effect of radiofrequency electromagnetic fields on cells. Int. J. Mol. Sci. 15:5366–87. doi:10.3390/ijms15045366.
  • Giacinti, C., and A. Giordano. 2006. RB and cell cycle progression. Oncogene 25:5220–27. doi:10.1038/sj.onc.1209615.
  • Goodrich, D. W., N. P. Wang, Y.-W. Qian, E. Y. H. P. Lee, and W.-H. Lee. 1991. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67:293–302. doi:10.1016/0092-8674(91)90181-W.
  • Houston, B. J., B. Nixon, B. V. King, R. J. Aitken, and G. N. De Iuliis. 2018. Probing the origins of 1,800 MHz radio frequency electromagnetic radiation induced damage in mouse immortalized germ cells and spermatozoa in vitro. Front. Public. Health 6:270. doi:10.3389/fpubh.2018.00270.
  • Houston, B. J., B. Nixon, B. V. King, G. N. De Iuliis, and R. J. Aitken. 2016. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction 152:R263–R276. doi:10.1530/REP-16-0126.
  • Ishihara, T., K. Yamazaki, A. Araki, Y. Teraoka, N. Tamura, T. Hikage, M. Omiya, M. Mizuta, and R. Kishi. 2020. Exposure to radiofrequency electromagnetic field in the high-frequency band and cognitive function in children and adolescents: A literature review. Int. J. Environ. Res. Public Health 17:9179. doi:10.3390/ijerph17249179.
  • Jung, S. H., H. J. Hwang, D. Kang, H. A. Park, H. C. Lee, D. Jeong, K. Y. Lee, H. J. Park, Y.-G. Ko, and J.-S. Lee. 2019. mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene 38:1639–50. doi:10.1038/s41388-018-0521-8.
  • Karar, J., and A. Maity. 2011. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 4. doi:10.3389/fnmol.2011.00051.
  • Kesari, K. K., A. Agarwal, and R. Henkel. 2018. Radiations and male fertility. Reprod. Biol. Endocrinol. 16:1–16. doi:10.1186/s12958-018-0431-1.
  • Kim, J. H., Y. H. Huh, and H. R. Kim. 2016. Induction of autophagy in the striatum and hypothalamus of mice after 835 MHz radiofrequency exposure. PLoS One 11:e0153308. doi:10.1371/journal.pone.0153308.
  • Kim, J. H., C. H. Lee, H. G. Kim, and H. R. Kim. 2019. Decreased dopamine in striatum and difficult locomotor recovery from MPTP insult after exposure to radiofrequency electromagnetic fields. Sci. Rep. 9:1201. doi:10.1038/s41598-018-37874-z.
  • Kim, J. H., U. D. Sohn, H. G. Kim, and H. R. Kim. 2018. Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. Korean J. Physiol. Pharmacol. 22:277–89. doi:10.4196/kjpp.2018.22.3.277.
  • Kim, J. H., D. H. Yu, Y. H. Huh, E. H. Lee, H. G. Kim, and H. R. Kim. 2017. Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice. Sci. Rep. 7:41129. doi:10.1038/srep41129.
  • Lee, K. Y., B. C. Kim, N. K. Han, Y. S. Lee, T. Kim, J. H. Yun, N. Kim, J. K. Pack, and J. S. Lee. 2011. Effects of combined radiofrequency radiation exposure on the cell cycle and its regulatory proteins. Bioelectromagnetics 32:169–78. doi:10.1002/bem.20618.
  • Liu, Y.-X., J.-L. Tai, G.-Q. Li, Z.-W. Zhang, J.-H. Xue, H.-S. Liu, H. Zhu, Y.-L. Liu, A.-M. Li, and Y. Zhang. 2012. Exposure to 1950-MHz TD-SCDMA electromagnetic fields affects the apoptosis of astrocytes via caspase-3-dependent pathway. PloS One 7:e42332. doi:10.1371/journal.pone.0042332.
  • Malumbres, M. 2014. Cyclin-dependent kinases. Genome Biol. 15:122. doi:10.1186/gb4184.
  • Marchesi, N., C. Osera, L. Fassina, M. Amadio, F. Angeletti, M. Morini, G. Magenes, L. Venturini, M. Biggiogera, and G. Ricevuti. 2014. Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J. Cell. Physiol. 229:1776–86. doi:10.1002/jcp.24631.
  • Maskey, D., J. Pradhan, B. Aryal, C.-M. Lee, I.-Y. Choi, K.-S. Park, S. B. Kim, H. G. Kim, and M. J. Kim. 2010. Chronic 835-MHz radiofrequency exposure to mice hippocampus alters the distribution of calbindin and GFAP immunoreactivity. Brain Res. 1346:237–46. doi:10.1016/j.brainres.2010.05.045.
  • Miller, A. B., L. L. Morgan, I. Udasin, and D. L. Davis. 2018. Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Environ. Res. 167:673–83. doi:10.1016/j.envres.2018.06.043.
  • NTP, Natioanl Toxicology Program.. 2018a. Toxicology and carcinogenesis studies in B6C3F1/N mice exposed to whole-body radio frequency radiation at a frequency (1,900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl. Toxicol. Program Tech. Rep. Ser. 596(NTP–TR–596):1–270.
  • NTP, National Toxicology Program. 2018b. NTP technical report on the toxicology and carcinogenesis studies in Hsd: Sprague Dawley sd rats exposed to whole-body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl. Toxicol. Program Tech. Rep. (Peer Review Draft) 595(NTP–TR–595):1–381.
  • Nunes, H. L., K. Tuttis, J. M. Serpeloni, J. R. Nascimento, C. Q. Rocha, V. Al., O. Silva, A. H. Lengert, R. M. Reis, and I. M. S. Cólus. 2020. Characterization of the in vitro cytotoxic effects of brachydins isolated from Fridericia platyphylla in a prostate cancer cell line. J. Toxicol. Environ. Health A 83:547–58. doi:10.1080/15287394.2020.1784339.
  • Ozelin, S. D., J. M. Senedese, J. M. Alves, C. C. Munari, J. C. Costa, F. A. Resende, D. L. Campos, I. M. S. Lima, A. F. Andrade, E. A. Varanda, et al.. 2021. Preventive activity of Copaifera langsdorffii Desf. leaves extract and its major compounds, afzelin and quercitrin, on DNA damage in in vitro and in vivo models. J. Toxicol. Environ. Health A 84:569–81. doi:10.1080/15287394.2021.1898505.
  • Paternot, S., T. Arsenijevic, K. Coulonval, L. Bockstaele, J. E. Dumont, and P. P. Roger. 2006. Distinct specificities of pRb phosphorylation by CDK4 activated by cyclin D1 or cyclin D3: Differential involvement in the distinct mitogenic modes of thyroid epithelial cells. Cell Cycle 5:61–70. doi:10.4161/cc.5.1.2265.
  • Quadros, A. P. O., L. M. Almeida, M. Petreanu, R. Niero, P. C. Pi. Rosa, A. C. H. F. Sawaya, M. S. Mantovani, I. O. M. Gaivão, and E. L. Maistro. 2020. Risk assessment via genotoxicity, metabolism, apoptosis, and cell growth effects in a HepG2/C3A cell line upon treatment with Rubus rosifolius (Rosaceae) leaves extract. J. Toxicol. Environ. Health A 83::495–508. doi:10.1080/15287394.2020.1779888.
  • Rafalski, V. A., and A. Brunet. 2011. Energy metabolism in adult neural stem cell fate. Prog. Neurobiol. 93:182–203.
  • Redmayne, M., and O. Johansson. 2014. Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence. J. Toxicol. Environ. Health B 17:247–58. doi:10.1080/10937404.2014.923356.
  • Sagar, S., S. Dongus, A. Schoeni, K. Roser, M. Eeftens, B. Struchen, M. Foerster, N. Meier, S. Adem, and M. Röösli. 2018. Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: A systematic literature review. J. Expo. Sci. Environ. Epidemiol. 28:147–60. doi:10.1038/jes.2017.13.
  • Santini, S. J., V. Cordone, S. Falone, M. Mijit, C. Tatone, F. Amicarelli, and G. Di Emidio. 2018. Role of mitochondria in the oxidative stress induced by electromagnetic fields: Focus on reproductive systems. Oxid. Med. Cell. Longev. 2018:5076271. doi:10.1155/2018/5076271.
  • Selbach, M. T., A. S. Scotti, C. C. Feistel, C. C. Nicolau, D. Dalberto, N. G. dos Santos, G. Borsoi, A. B. F. Ferraz, I. Grivicich, G. M. S. de Souza, et al.. 2021. Evaluation of the cytotoxic and genotoxic effects of Sida planicaulis Cav extract using human neuroblastoma cell line SH-SY5Y. J. Toxicol. Environ. Health A 84:345–55. doi:10.1080/15287394.2020.1871144.
  • Soffritti, M., and L. Giuliani. 2019. The carcinogenic potential of non-ionizing radiations: The cases of S-50 Hz MF and 1.8 GHz GSM radiofrequency radiation. Basic Clin. Pharmacol. Toxicol. 125 (Suppl 3):58–69. doi:10.1111/bcpt.13215.
  • Speidel, D. 2015. The role of DNA damage responses in p53 biology. Arch. Toxicol. 89:501–17.
  • Su, L., X. Wei, Z. Xu, and G. Chen. 2017. RF‐EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics 38:175–85. doi:10.1002/bem.22032.
  • von Niederhäusern, N., A. Ducray, J. Zielinski, M. Murbach, and M. Mevissen. 2019. Effects of radiofrequency electromagnetic field exposure on neuronal differentiation and mitochondrial function in SH-SY5Y cells. Toxicol. In Vitro 61:104609. doi:10.1016/j.tiv.2019.104609.
  • Wade Harper, J., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–16. doi:10.1016/0092-8674(93)90499-G.
  • Wall, S., Z.-M. Wang, T. Kendig, D. Dobraca, and M. Lipsett. 2019. Real-world cell phone radiofrequency electromagnetic field exposures. Environ. Res. 171:581–92. doi:10.1016/j.envres.2018.09.015.
  • Xu, F., L. Na, Y. Li, and L. Chen. 2020. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 10:1–12. doi:10.1186/s13578-020-00416-0.
  • Xu, S., G. Chen, C. Chen, C. Sun, D. Zhang, M. Murbach, N. Kuster, Q. Zeng, and Z. Xu. 2013. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One 8:e54906. doi:10.1371/journal.pone.0054906.
  • Xu, S., Z. Zhou, L. Zhang, Z. Yu, W. Zhang, Y. Wang, X. Wang, M. Li, Y. Chen, and C. Chen. 2010. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 1311:189–96. doi:10.1016/j.brainres.2009.10.062.
  • Yogosawa, S., and K. Yoshida. 2018. Tumor suppressive role for kinases phosphorylating p53 in DNA damage‐induced apoptosis. Cancer Sci. 109:3376–82. doi:10.1111/cas.13792.
  • Zarkowska, T., and S. Mittnacht. 1997. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J. Biol. Chem. 272:12738–46. doi:10.1074/jbc.272.19.12738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.