215
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Phytotoxic, cytogenotoxic, and insecticidal activities of compounds from extracts of freshwater Lyngbya sp

, , , , , , & show all

References

  • Almeida, G. D., M. Zucoloto, M. C. Zetun, I. Coelho, and F. M. Sobreira. 2008. Oxidative stress in vegetable cells mediated by allelochemicals. Rev Fac Nac Agr Medellín 61:4237–47.
  • Anwar, T., H. Qureshi, M. H. Mahnashi, F. Kabir, N. Parveen, D. Ahmed, U. Afzal, S. Batool, M. Awais, and S. A. Alyami, et al. 2021. Bioherbicidal ability and weed management of allelopathic methyl esters from lantana camara. Saudi J Biol Sci 28:4365–74. doi:10.1016/j.sjbs.2021.04.026.
  • Asif, N., M. F. Malik, and F. N. Chaudhry. 2018. A review of environmental pollution bioindicators. Pollution 4:111–18. doi:10.22059/poll.2017.237440.296.
  • Aswathi, P., and J. E. Thoppil. 2019. Induction of nuclear buds and micronuclei in allium cepa root meristem by the leaf extract of dieffenbachia maculata (lodd.) sweet. Int Res J Pharm 10:166–70. doi:10.7897/2230-8407.100262.
  • Athanásio, C. G., D. Prá, and A. Rieger. 2014. Water quality of urban streams: the allium cepa seeds/seedlings test as a tool for surface water monitoring. Sci World J 2014:1–7. doi:10.1155/2014/391367.
  • Barbosa, M. R., M. M. A. Silva, L. Willadino, C. Ulisses, and T. R. Camara. 2014. Plant generation and enzymatic detoxification of reactive oxygen species. Cienc Rural 44:453–60. doi:10.1590/S0103-84782014000300011.
  • Berry, J. P., M. Gantar, R. E. Gawley, M. Wang, and K. S. Rein. 2004. Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the florida everglades. Comp Biochem Physiol Part-C: Toxicol Pharmacol 139:231–38. doi:10.1016/j.cca.2004.11.005.
  • Berry, J. P., M. Gantar, M. H. Perez, G. Berry, and F. G. Noriega. 2008. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–46. doi:10.3390/md6020117.
  • Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–17. doi:10.1139/o59-099.
  • Bonciu, E., P. Firbas, C. S. Fontanetti, J. Wusheng, M. C. Karaismailoğlu, D. Liu, F. Menicucci, D. S. Pesnya, A. Popescu, and A. V. Romanovsky, et al. 2018. An evaluation for the standardization of the allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 71:191–209. doi:10.1080/00087114.2018.1503496.
  • Byreddy, A. R., A. Gupta, C. J. Barrow, and M. Puri. 2016. A quick colorimetric method for total lipid quantification in microalgae. J Microbiol Meth 125:28–32. doi:10.1016/j.mimet.2016.04.002.
  • Cabrera-Santos, D., C. A. Ordoñez-Salanueva, S. Sampayo-Maldonado, J. E. Campos, A. Orozco-Segovia, and C. M. Flores-Ortiz. 2021. Chia (Salvia hispanica L.) seed soaking, germination, and fatty acid behavior at different temperatures. Agriculture 11:498. doi:10.3390/agriculture11060498.
  • Carmo, F. M. S., E. E. L. Broges, and M. Takaki. 2007. Allelopathy of Brazilian sassafras (Ocotea odorifera (Vell.) Rohwer) aqueous extracts. Acta Bot Bras 21:697–705. doi:10.1590/S0102-33062007000300016.
  • Castro, T. L. A., L. F. Viana, M. S. M. Santos, and C. A. L. Cardoso. 2020. Antiproliferative action and mutagenicity of the infusion of Campomanesia sessiliflora leaves in the allium cepa model. Res soc dev 9:e625974555. doi:10.33448/rsd-v9i7.4555.
  • Chaïb, S., J. C. A. Pistevos, C. Bertrand, and I. Bonnard. 2021. Allelopathy and allelochemicals from microalgae: an innovative source for bio-herbicidal compounds and biocontrol research. Algal Res 54:102213. doi:10.1016/j.algal.2021.102213.
  • Coelho, E. M. P., M. C. Barbosa, M. S. Mito, G. C. Mantovanelli, R. S. Oliveira Jr, and E. L. Ishii-Iwamoto. 2017. The activity of the antioxidant defense system of the weed species Senna obtusifolia L. and its resistance to allelochemical stress. J. Chem. Ecol 43:725–38. doi:10.1007/s10886-017-0865-5.
  • Costa, M., J. Costa-Rodrigues, M. H. Fernandes, P. Barros, V. Vasconcelos, and R. Martins. 2012. Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Mar Drugs 10:2181–207. doi:10.3390/md10102181.
  • Costa, M. S., M. Costa, V. Ramos, P. N. Leão, A. Barreiro, V. Vasconcelos, and R. Martins. 2015. Picocyanobacteria from a clade of marine Cyanobium revealed bioactive potential against microalgae, bacteria, and marine invertebrates. J. Toxicol. Environ. Health Part A 78:432–42. doi:10.1080/15287394.2014.991466.
  • Demay, J., C. Bernard, A. Reinhardt, and B. Marie. 2019. Natural products from cyanobacteria: focus on beneficial activities. Mar Drugs 17:320. doi:10.3390/md17060320.
  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem 28:350–56. doi:10.1021/ac60111a017.
  • Engene, N., H. Choi, E. Esquenazi, E. C. Rottacker, M. H. Ellisman, P. C. Dorrestein, and W. H. Gerwich. 2011. Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ. Microbiol 13:1601–10. doi:10.1111/j.1462-2920.2011.02472.x.
  • Essack, M., H. S. Alzubaidy, V. B. Bajic, and J. A. C. Archer. 2014. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry. Toxins 6:3058–76. doi:10.3390/toxins6113058.
  • Fernandes, A. S., J. H. Véras, L. S. Silva, S. C. Puga, E. F. L. C. Bailão, M. G. Oliveira, C. G. Cardoso, C. C. Carneiro, S. C. Santos, and L. Chen-Chen. 2022. Pedunculagin isolated from Plinia cauliflora seeds exhibits genotoxic, antigenotoxic and cytotoxic effects in bacteria and human lymphocytes. J. Toxicol. Environ. Health Part A 85:353–63. doi:10.1080/15287394.2021.2009947.
  • Fiskesjö, G. 1985. The allium test as a standard in environmental monitoring. Hereditas 102:99–112. doi:10.1111/j.1601-5223.1985.tb00471.x.
  • Fiskesjö, G. 1994. Allium test II: assessment of chemical’s genotoxic potential by recording aberrations in chromosomes and cell divisions in root tips of allium cepa L. Environ Toxicol Water Qual 9:235–41. doi:10.1002/tox.2530090311.
  • Francisco, L. F. V., B. A. Crispim, L. F. Viana, H. S. Nascimento, J. L. R. Junior, and A. B. Grisoli. 2018. Cytotoxicity, genotoxicity and mutagenicity of aluminum, manganese and lead in meristematic cells of root Allium cepa. Orbital 10:60–65. doi:10.17807/orbital.v10i1.1037.
  • Fu, Y., J. H. Bhadha, P. Rott, J. M. Beuzelin, and R. Kanissery. 2020. Investigating the use of aquatic weeds as biopesticides towards promoting sustainable agriculture. PLoS One 15:e0237258. doi:10.1371/journal.pone.0237258.
  • Fuentes-Tristan, S., R. Parra-Saldivar, H. M. N. Iqbal, and D. Carrillo-Nieves. 2019. Bioinspired biomolecules: mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. J Photochem Photobiol B: Biol 201:111684. doi:10.1016/j.jphotobiol.2019.111684.
  • Gatti, A. B., S. C. J. G. A. Perez, and M. I. S. Lima. 2004. Allelopathic activity of aqueous extracts of Aristolochia esperanzae O. Kuntze in the germination and growth of Lactuca sativa L. and Raphanus sativus L. Acta Bot Bras 18:459–72. doi:10.1590/S0102-33062004000300006.
  • Gheda, S. F., and G. A. Ismail. 2020. Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. An Acad Bras Ciênc 92:e20190934. doi:10.1590/0001-3765202020190934.
  • Gniazdowska, A., U. Krasuska, O. Andrzejczak, and D. Soltys. 2015. Allelopathic compounds as oxidative stress agents: yes or no. In Reactive oxygen and nitrogen species signaling and communication in plants, ed. K. J. Gupta and A. U. Igamberdiev, 155–76. Cham: Springer. doi:10.1007/978-3-319-10079-1_8.
  • Gröger, W. K. L. 1961. Determination of sugars in biological media with thymol in sulphuric acid. Clin. Chim. Acta 6:866–73. doi:10.1016/0009-8981(61)90176-0.
  • Gross, E. M. 2003. Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–39. doi:10.1080/713610859.
  • Guerreiro, A., M. A. Andrade, C. Menezes, F. Vilarinho, and E. Dias. 2020. Antioxidant and cytoprotective properties of cyanobacteria: potential for biotechnological applications. Toxins 12:548. doi:10.3390/toxins12090548.
  • Hickman, D. T., A. Rasmussen, K. Ritz, M. A. Birkett, and P. Neve. 2020. Review: allelochemicals as multi-kingdom plant defence compounds: towards an integrated approach. Pest Manage Sci 77:1121–31. doi:10.1002/ps.6076.
  • Holtappels, D., K. Fortuna, R. Lavigne, and J. Wagemans. 2021. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol 68:60–71. doi:10.1016/j.copbio.2020.08.016.
  • Hossain, M. F., R. R. Ratnayake, K. Meerajini, and K. L. W. Kumara. 2016. Antioxidant properties in some selected cyanobacteria isolated from fresh water bodies of Sri Lanka. Food Sci Nutr 4:753–58. doi:10.1002/fsn3.340.
  • Hsieh, C., Y. Lin, W. Ko, C. Peng, C. Huang, and R. Peng. 2005. Inhibitory effect of some selected nutraceutic herbs on LDL glycation induced by glucose and glyoxal. J Ethnopharmacol 102:357–63. doi:10.1016/j.jep.2005.06.044.
  • Inderjit, D. K. M. M. 1994. Allelopathic effect of Pluchea lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth. Am. J. Bot 81:799–804. doi:10.1002/j.1537-2197.1994.tb15560.x.
  • Inderjit, N. E. T. 2003. Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–38. doi:10.1080/713610857.
  • Inobeme, A., V. Nayak, T. J. Mathew, S. Okonkwo, L. Ekwoba, A. I. Ajai, E. Bernard, J. Inobeme, M. M. Agbugui, and K. R. B. Singh. 2022. Chemometric approach in environmental pollution analysis: A critical review. J. Environ. Manage 309:114653. doi:10.1016/j.jenvman.2022.114653.
  • Jabran, K., G. Mahajan, V. Sardana, and B. S. Chauhan. 2015. Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65. doi:10.1016/j.cropro.2015.03.004.
  • Kong, C., T. D. Xuan, T. D. Khanh, H. Tran, and N. T. Trung. 2019. Allelochemicals and signaling chemicals in plants. Molecules 24:2737. doi:10.3390/molecules24152737.
  • Laughinghouse, I. V., P. D. H.d, M. E. Silva-Stenico, A. Rieger, V. D. Frescura, M. F. Fiore, and S. B. Tedesco. 2012. Biomonitoring genotoxicity and cytotoxicity of Microcystis aeruginosa (Chroococcales, Cyanobacteria) using the allium cepa test. Scil Total Environ 432:180–88. doi:10.1016/j.scitotenv.2012.05.093.
  • Leflaive, J., and L. Ten-Hage. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshw. Biol 52:199–214. doi:10.1111/j.1365-2427.2006.01689.x.
  • Leme, D. M., and M. A. Marin-Morales. 2009. Allium cepa test in environmental monitoring: A review on its application. Rev Mutat Res 682:71–81. doi:10.1016/j.mrrev.2009.06.002.
  • Li, X., Y. Xu, J. Liu, X. Yu, W. Zhang, and C. You. 2022. Biological activities and gene expression of detoxifying enzymes in Tribolium castaneum induced by Moutan cortex essential oil. J. Toxicol. Environ. Health Part A 85:591–602. doi:10.1080/15287394.2022.2066038.
  • Long, M., A. Peltekis, C. González-Fernández, H. Hégaret, and B. Bailleul. 2021. Allelochemicals of Alexandrium minutum: kinetics of membrane disruption and photosynthesis inhibition in a co-occurring diatom. Harmful Algae 103:101997. doi:10.1016/j.hal.2021.101997.
  • López-Pacheco, I. Y., S. Fuentes-Tristan, L. I. Rodas-Zuluaga, C. Castillo-Zacarías, I. Pedro-Carrillo, M. A. Martínez-Prado, H. M. N. Iqbal, and R. Parra-Saldívar. 2020. Influence of low salt concentration on growth behavior and general biomass composition in Lyngbya purpurem (Cyanobacteria). Mar Drugs 18:621. doi:10.3390/md18120621.
  • Lourenção, A., G. F. Mecina, M. K. Cordeiro-Araújo, M. C. Bittencourt-Oliveira, M. A. Chia, J. L. Bronzel-Júnior, F. O. Granero, L. P. Silva, and R. M. G. Silva. 2021. Characterization of allelochemicals from Pistia stratiotes extracts and their effects on the growth and physiology of Microcystis aeruginosa. Environ Sci Pollut Res Int 28:57248–59. doi:10.1007/s11356-021-14658-z.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–75. doi:10.1016/S0021-9258(19)52451-6.
  • Macías, F. A., F. J. R. Mejías, and J. M. G. Molinillo. 2019. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manage Sci 75:2413–36. doi:10.1002/ps.5355.
  • Manogar, P., S. Vijayakumar, and P. K. Praseetha. 2020. Evaluation of antioxidant and neuroprotective activities of Lyngbya majuscula on human neural tissues. Gene Rep 19:100661. doi:10.1016/j.genrep.2020.100661.
  • Máthé, C., M. M-Hamvas, G. Vasas, T. Garda, and C. Freytag. 2021. Subcellular alterations induced by cyanotoxins in vascular plants - A review. Plants 10:984. doi:10.3390/plants10050984.
  • Michel, B. E., and M. R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–16. doi:10.1104/pp.51.5.914.
  • Mohammadkhani, N., and M. Servati. 2018. Nutrient concentration in wheat and soil under allelopathy treatments. J. Plant Res 131:143–55. doi:10.1007/s10265-017-0981-x.
  • Muhammad, Z., N. Inayat, A. Majeed, H. Ali, and K. Ullah. 2019. Allelopathy and agricultural sustainability: Implication in weed management and crop protection - an overview. Eur J Ecol 5:54–61. doi:10.2478/eje-2019-0014.
  • Northam, F., and R. Callihan. 1994. Interpreting germination results based on differing embryonic emergence criteria. Weed Sci 42:474–81. doi:10.1017/S0043174500076797.
  • Oliveira, D. T., A. A. F. Costa, F. F. Costa, G. N. Rocha-Filho, and L. A. S. Nascimento. 2020. Advances in the biotechnological potential of Brazilian marine microalgae and cyanobacteria. Molecules 25:2908. doi:10.3390/molecules25122908.
  • Patel, A., S. Mishra, R. Pawar, and P. K. Ghosh. 2005. Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Exp Purif 40:248–55. doi:10.1016/j.pep.2004.10.028.
  • Pélissier, R., C. Violle, and J. Morel. 2021. Plant immunity: Good fences make good neighbors? Curr. Opin. Plant Biol 62:102045. doi:10.1016/j.pbi.2021.102045.
  • Poonpaiboonpipat, T., U. Pangnakorn, U. Suvunnamek, M. Teerarak, P. Charoenying, and C. Laosinwattana. 2013. Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyard grass (Echinochloa crus-galli). Ind Crops Prod 41:403–07. doi:10.1016/j.indcrop.2012.04.057.
  • Price, C. A. 1965. A membrane method for determination of total protein in dilute algal suspension. Anal. Biochem 12:213–18. doi:10.1016/0003-2697(65)90084-9.
  • Ribeiro, I. A. T. A., R. Silva, A. G. Silva, P. Milet-Pinheiro, P. M. G. Paiva, D. M. A. F. Navarro, M. V. Silva, T. H. Napoleão, and M. T. S. Correia. 2020. Chemical characterization and insecticidal effect against Sitophilus zeamais (maize weevil) of essential oil from Croton rudolphianus leaves. Crop Prot 129:105043. doi:10.1016/j.cropro.2019.105043.
  • Sabeen, M., Q. Mahmood, Z. A. Bhatti, M. Faridullah-Irshad, M. Bilal, M. T. Hayat, U. Irshad, T. A. Akbar, M. Arslan, and N. Shahid. 2020. Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi J Biol Sci 27:1368–74. doi:10.1016/j.sjbs.2019.12.011.
  • Santos, P. C., V. H. M. Santos, G. F. Mecina, A. R. Andrade, P. A. Figueiredo, V. M. O. Moraes, L. P. Silva, and R. M. G. Silva. 2016. Insecticidal activity of tagetes sp. on Sitophilus zeamais mots. Int J Environ Agric Res 2:31–38.
  • Scavo, A., and G. Mauromicale. 2021. Crop allelopathy for sustainable weed management in agroecosystems: knowing the present with a view to the future. Agronomy 11:2104. doi:10.3390/agronomy11112104.
  • Schandry, N, and C Becker. 2019. Allelopathic plants: models for studying plant–interkingdom interactions. Trends Plant Sci. 25:176–185. doi:10.1016/j.tplants.2019.11.004.
  • Schnarr, L., M. L. Segatto, O. Olsson, V. G. Zuin, and K. Kümmerer. 2022. Flavonoids as biopesticides - systematic assessment of sources, structures, activities and environmental fate. Sci. Total Environ 824:153781. doi:10.1016/j.scitotenv.2022.153781.
  • Sharathchandra, K., and M. Rajashekhar. 2011. Total lipid and fatty acid composition in some freshwater cyanobacteria. J Algal Biomass Util 2:83–97.
  • Silva, R. M. G., J. G. F. Brigatti, V. H. M. Santos, G. F. Mecina, and L. P. Silva. 2013. Allelopathic effect of the peel of coffee fruit. Sci Horticult 158:39–44. doi:10.1016/j.scienta.2013.04.028.
  • Singh, D. P., R. Prabha, S. Verma, K. K. Meena, and M. Yandigeri. 2017. Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotechnology 7:134. doi:10.1007/s13205-017-0786-6.
  • Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299:152–78. doi:10.1016/S0076-6879(99)99017-1.
  • Śliwińska-Wilczewska, S., K. Wiśniewska, Z. Konarzewska, A. Cieszyńska, A. B. Felpeto, A. U. Lewandowska, and A. Latała. 2021. The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. Sci. Total Environ 773:145681. doi:10.1016/j.scitotenv.2021.145681.
  • Sonani, R. R., N. K. Singh, J. Kumar, D. Thakar, and D. Madamwar. 2014. Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: An antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochem 49:1757–66. doi:10.1016/j.procbio.2014.06.022.
  • Starcher, B. 2001. A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal. Biochem 292:125–29. doi:10.1006/abio.2001.5050.
  • Swain, S. S., R. N. Padhy, and P. K. Singh. 2015. Anticancer compounds from cyanobacterium Lyngbya species: A review. Antonie van Leeuwenhoek 108:223–65. doi:10.1007/s10482-015-0487-2.
  • Tan, L. T. 2012. Chapter 4 – Marine cyanobacteria: A treasure trove of bioactive secondary metabolites for drug discovery. Stud Nat Prod Chem 36:67–110. doi:10.1016/B978-0-444-53836-9.00021-9.
  • Tan, K., Z. Huang, R. Ji, Y. Qiu, Z. Wang, and J. Liu. 2019. A review of allelopathy on microalgae. Microbiology 165:587–92. doi:10.1099/mic.0.000776.
  • Thuan, N. H., T. T. An, A. Shrestha, N. X. Canh, J. K. Sohng, and D. Dhakal. 2019. Recent advances in exploration and biotechnological production of bioactive compounds in three cyanobacterial genera: Nostoc, Lyngbya, and Microcystis. Front Chem 7:604. doi:10.3389/fchem.2019.00604.
  • Tigre, R. C., N. H. Silva, M. G. Santos, N. K. Honda, E. P. S. Falcão, and E. C. Pereira. 2012. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicol. Environ. Saf 84:125–32. doi:10.1016/j.ecoenv.2012.06.026.
  • Toda, S. 2005. Antioxidative effects of polyphenols from leaves of Artemisia princeps pamp. on lipid peroxidation in vitro. J. Food Biochem 29:305–12. doi:10.1111/j.1745-4514.2005.00033.x.
  • Vieira, C. S. S., P. A. Nicola, and K. C. A. Bortoleti. 2022. Determination of phytotoxicity and cytogenotoxicity due to exposure to particles originating from sugarcane burning using test systems Lactuca sativa L. and Allium cepa L. J. Toxicol. Environ. Health Part A 85:561–72. doi:10.1080/15287394.2022.2054483.
  • Wang, K., T. Wang, C. Ren, P. Dou, Z. Miao, X. Liu, D. Huang, and K. Wang. 2022. Aqueous extracts of three herbs allelopathically inhibit lettuce germination but promote seedling growth at low concentrations. Plants 11:486. doi:10.3390/plants11040486.
  • Wijetunge, D. C. R., and H. K. I. Perera. 2014. A novel in vitro method to identify protein glycation inhibitors. Asian J Med Sci 5:15–21. doi:10.3126/ajms.v5i3.8670.
  • Zhang, Z., Y. Liu, L. Yuan, E. Weber, and M. van Kleunen. 2021. Effect of allelopathy on plant performance: A meta-analysis. Ecol. Lett 24:348–62. doi:10.1111/ele.13627.
  • Zhishen, J., T. Mengcheng, and W. Jianming. 1999. The determination of flavonoid contents in mulberry and the scavenging effects on superoxide radicals. Food Chem 64:555–59. doi:10.1016/S0308-8146(98)00102-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.