244
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum

, &

References

  • Agostini, G., C. Deutsch, and D. N. Bilenca. 2021. Differential responses of anuran assemblages to land use in agroecosystems of central Argentina. Agric. Ecosyst. Environ. 311:107323.
  • Agostini, M. G., F. Kacoliris, P. Demetrio, G. S. Natale, C. Bonetto, and A. E. Ronco. 2013. Abnormalities in amphibian populations inhabiting agroecosystems in northeastern buenos aires province, Argentina. Dis. Aquat. Org. 104 (2):163–71. doi:10.3354/dao02592.
  • Agostini, M. G., and I. Roesler. 2011. Amphibia, Anura, Hylidae, Scinax granulatus (Peters, 1871): Distribution extension in central Argentina. Check List 7 (2):112–13. doi:10.15560/7.2.112.
  • Agostini, M. G., I. Roesler, C. Bonetto, A. E. Ronco, and D. Bilenca. 2020. Pesticides in the real world: the consequences of GMO-based intensive agriculture on native amphibians. Biol. Conserv. 241:108355. doi:10.1016/j.biocon.2019.108355.
  • Alonso, L. L., P. M. Demetrio, M. Agustina Etchegoyen, and D. J. Marino. 2018. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the Pampas region in Argentina. Sci. Total Environ. 645:89–96. doi:10.1016/j.scitotenv.2018.07.134.
  • Anderson, J. C., C. Dubetz, and V. C. Palace. 2015. Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Sci. Total Environ. 505:409–22. doi:10.1016/j.scitotenv.2014.09.090.
  • Andrade, V. S., M. F. Gutierrez, L. Regaldo, A. R. Paira, M. R. Repetti, and A. M. Gnagneten. 2021. Influence of rainfall and seasonal crop practices on nutrient and pesticide runoff from soybean dominated agricultural areas in Pampean streams, Argentina. Sci. Total Environ. 788:147676.
  • Aseperi, A. K., R. Busquets, P. S. Hooda, P. C. W. Cheung, and J. Barker. 2020. Behaviour of neonicotinoids in contrasting soils. J Environ Manage 276:111329. doi:10.1016/j.jenvman.2020.111329.
  • ASTM. 1998. Standard guide for conducting the frog embryo teratogenesis assay-xenopus (FETAX). Philadelphia, Pennsylvania: American Society for Testing Materials E1439– E1498.
  • Babini, M., C. Bionda, N. Salas, and A. Martino. 2016. Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles. Environ. Monit. Assess. 188 (8):1–14. doi:10.1007/s10661-016-5473-2.
  • Babini, M., C. Bionda, Z. Salinas, N. Salas, and A. Ludovico. 2018. Reproductive endpoints of Rhinella arenarum (Anura, Bufonidae): Populations that persist in agroecosystems and their use for the environmental health assessment. Ecotoxicol. Environ. Saf. 154:294–301. doi:10.1016/j.ecoenv.2018.02.050.
  • Bass, C., I. Denholm, M. S. Williamson, and R. Nauen. 2015. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 121:78–87. doi:10.1016/j.pestbp.2015.04.004.
  • Bionda, C., M. Babini, A. Martino, N. Salas, and R. Lajmanovich. 2018. Impact assessment of agriculture and livestock over age, longevity and growth of populations of common toad Rhinella arenarum (Anura: Bufonidae), central area of Argentina. Global Ecol. Conserv. 14:e003998.
  • Bionda, C., R. Lajmanovich, N. Salas, A. Martino, and I. Di Tada. 2013. Demografía poblacional de Rhinella arenarum (Anura: Bufonidae) y Physalaemus biligonigerus (Anura: Leiuperidae) en agroecosistemas de la provincia de Córdoba, Argentina. Rev Biol Trop 61 (3):1389–400. doi:10.15517/rbt.v61i3.11966.
  • Boone, M. D. 2018. An amphibian with a contracting range is not more vulnerable to pesticides in outdoor experimental communities than common species. Environ. Toxicol. Chem 37 (10):2699–704. doi:10.1002/etc.4236.
  • Brodeur, J. C., M. J. Damonte, D. E. Rojas, D. Cristos, C. Vargas, M. B. Poliserpi, and A. E. Andriulo. 2022. Concentration of current-use pesticides in frogs from the Pampa region and correlation of a mixture toxicity index with biological effects. Environ. Res. 204:112354. doi:10.1016/j.envres.2021.112354.
  • Brodeur, J. C., M. Sanchez, L. Castro, D. E. Rojas, D. Cristos, M. J. Damonte, M. B. Poliserpi, M. F. D’Andrea, and A. E. Andriulo. 2017. Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina. Chemosphere 185:36–46. doi:10.1016/j.chemosphere.2017.06.129.
  • Brodeur, J. C., A. Sassone, G. N. Hermida, and N. Codugnello. 2013. Environmentally-relevant concentrations of atrazine induce non-monotonic acceleration of developmental rate and increased size at metamorphosis in Rhinella arenarum tadpoles. Ecotoxicol. Environ. Saf. 92:10–17. doi:10.1016/j.ecoenv.2013.01.019.
  • Brodeur, J. C., R. S. Suarez, G. S. Natale, A. E. Ronco, and M. E. Zaccagnini. 2011. Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotoxicol. Environ. Saf. 74 (5):1370–80. doi:10.1016/j.ecoenv.2011.04.024.
  • Brodeur, J. C., G. Svartz, C. S. Perez-Coll, D. J. G. Marino, and J. Herkovits. 2009. Comparative susceptibility to atrazine of three developmental stages of Rhinella arenarum and influence on metamorphosis: Non-monotonous acceleration of the time to climax and delayed tail resorption. Aquat. Toxicol 91 (2):161–70. doi:10.1016/j.aquatox.2008.07.003.
  • Brodeur, J. C., and J. Vera Candioti. 2017. Impacts of agriculture and pesticides on amphibian terrestrial life stages: Potential biomonitor/bioindicator species for the pampa region of Argentina. InEcotoxicology and genotoxicology - non-traditional terrestrial Models, M. L. Larramendy ed., 163–94. London, UK: Royal Society of Chemistry.
  • Brodeur, J. C., J. Vera Candioti, S. Soloneski, M. L. Larramendy, and A. E. Ronco. 2012. Evidence of reduced feeding and oxidative stress in common tree frogs (Hypsiboas pulchellus) from an agroecosystem experiencing severe drought. J. Herpetol 46 (1):72–78. doi:10.1670/10-200.
  • Brown, D. B., and L. Cai. 2007. Amphibian metamorphosis. Dev. Biol. 306 (1):20–33. doi:10.1016/j.ydbio.2007.03.021.
  • Bruhl, C. A., T. Schmidt, S. Pieper, and A. Alscher. 2013. Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline? Sci. Rep. 3 (1):1135. doi:10.1038/srep01135.
  • Campbell Grant, E. H., D. A. W. Miller, B. R. Schmidt, M. J. Adams, S. M. Amburgey, T. Chambert, S. S. Cruickshank, R. N. Fisher, D. M. Green, B. R. Hossack, et al. 2016. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci Rep. 6(1):25625. doi:10.1038/srep25625.
  • Caprile, A. C. 2019. Residuos de plaguicidas en la cuenca del arroyo pergamino. Contribución de los sistemas de producción agrícola. Tesis presentada para optar al título de Magister de la Universidad de Buenos Aires, Área Ciencia del Suelo. Buenos Aires, Argentina.
  • Castro Berman, M., D. J. G. Marino, M. V. Quiroga, and H. Zagarese. 2018. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. Chemosphere 200:513–22. doi:10.1016/j.chemosphere.2018.02.103.
  • Cei, J. M. 1980. Amphibians of Argentina. Monitore Zool Ital Monogr 2:609.
  • Chang, Y., L. Mao, L. Zhang, Y. Zhang, and H. Jiang. 2020. Combined toxicity of imidacloprid, acetochlor, and tebuconazole to zebrafish (Danio rerio): Acute toxicity and hepatotoxicity assessment. Environ. Sci. Pollut. Res. 27 (10):10286–95. doi:10.1007/s11356-020-07653-3.
  • Crayton, S. M., P. B. Wood, D. J. Brown, A. R. Millikin, T. J. McManus, T. J. Simpson, K. M. Ku, and Y. L. Park. 2020. Bioaccumulation of the pesticide imidacloprid in stream organisms and sublethal effects on salamanders. Global Ecol. Conserv 24:e01292. doi:10.1016/j.gecco.2020.e01292.
  • Danis, B. E. G., and V. L. Marlatt. 2021. Investigating acute and subchronic effects of neonicotinoids on northwestern salamander larvae. Arch. Environ. Contam. Toxicol 80 (4):691–707. doi:10.1007/s00244-021-00840-4.
  • Delfino Vieira, C. E., M. R. Perez, R. D’Anna Acayaba, C. C. Montagner Raimundo, and C. Bueno Dos Reis Martinez. 2018. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus Lineatus. Chemosphere 195:125–34. doi:10.1016/j.chemosphere.2017.12.077.
  • El Euony, O. I., S. S. Elblehi, H. M. Abdel-Latif, M. M. Abdel-Daim, and Y. S. El-Sayed. 2020. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). Environ. Sci. Pollut. Res. 27 (18):23108–28. doi:10.1007/s11356-020-08588-5.
  • El Okle, O. S., M. A. Lebda, and H. G. Tohamy. 2016. Thiamethoxam-induced biochemical, hormonal and histological alterations in rats. Int. J. Toxicol. Pharmacol. Res. 8:320–25.
  • Feng, S., Z. Kong, X. Wang, L. Zhao, and P. Peng. 2004. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell. Chemosphere 56 (5):457–63. doi:10.1016/j.chemosphere.2004.02.010.
  • Finnegan, M., L. R. Baxter, J. D. Maul, M. L. Hanson, and P. F. Hoekstra. 2017. Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates and fish. Environ. Toxicol. Chem 36 (10):1370–80. doi:10.1002/etc.3846.
  • Franzen-Klein, D., M. Jankowski, C. L. Roy, H. Nguyen-Phuc, D. Chen, L. Neuman-Lee, P. Redig, and J. Ponder. 2020. Evaluation of neurobehavioral abnormalities and immunotoxicity in response to oral imidacloprid exposure in domestic chickens (Gallus gallus domesticus). J Toxicol Environ Health A 83 (2):45–65. doi:10.1080/15287394.2020.1723154.
  • Gavel, M. J., S. D. Richardson, R. L. Dalton, C. Soos, B. Ashby, L. McPhee, M. R. Forbes, and S. A. Robinson. 2019. Effects of 2 Neonicotinoid Insecticides on Blood Cell Profiles and Corticosterone Concentrations of Wood Frogs (Lithobates sylvaticus). Environ. Toxicol. Chem 38 (6):1273–84. doi:10.1002/etc.4418.
  • Gavel, M. J., S. D. Young, R. Dalton, C. Soos, L. McPhee, M. R. Forbes, and S. A. Robinson. 2021. Effects of two pesticides on northern leopard frog (Lithobates pipiens) stress metrics: Blood cell profiles and corticosterone concentrations. Aquat. Toxicol. 235:105820. doi:10.1016/j.aquatox.2021.105820.
  • Gibbons, D., C. Morrissey, and P. Mineau. 2015. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res Int 22 (1):103–18. doi:10.1007/s11356-014-3180-5.
  • Glaberman, S., J. Kiwiet, and C. B. Aubee. 2019. Evaluating the role of fish as surrogates for amphibians in pesticide ecological risk assessment. Chemosphere 235:952–58. doi:10.1016/j.chemosphere.2019.06.166.
  • Gondim, P. M., J. F. M. Rodrigues, and P. Cascon. 2020. Fluctuating asymmetry and organosomatic indices in anuran populations in agricultural environments in semi-arid Brazil. Herpetol. Conserv. Biol. 15:354–66.
  • Gosner, K. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–90.
  • Gradila, M. 2013. Chronic aspects of imidacloprid on the fishes from Cyprinidae family. Roman J Plant Protect 6:11–15.
  • Hladik, M. L., A. R. Main, and D. Goulson. 2018. Environmental risks and challenges associated with neonicotinoid insecticides. Environ Sci Technol 52 (6):3329–35. doi:10.1021/acs.est.7b06388.
  • Houchat, J.-N., A. Cartereau, A. L. Mauff, E. Taillebois, and S. H. Thany. 2020. An overview on the effect of neonicotinoid insecticides on mammalian cholinergic functions through the activation of neuronal nicotinic acetylcholine receptors. Int J Environ Res Public Health 17 (9):3222. doi:10.3390/ijerph17093222.
  • Ibrahim, K., M. El-Desouky, H. Abou-Yousef, K. Gabrowny, and A. El-Sayed. 2015. Imidacloprid and/or esfenvalerate induce apoptosis and disrupt thyroid hormones in neonatal rats. Glob. J. Biotechnol. Biochem. 3:106–12.
  • Islam, M. A. H., S. Md, K. A. Sumon, and M. M. Rahman. 2019. Acute toxicity of imidacloprid on the developmental stages of common Cyprinus carpio. J. Toxicol. Environ. Health Sci 11 (3):244–51. doi:10.1007/s13530-019-0410-8.
  • Iturburu, F. G., M. Zomisch, A. M. Panzeri, A. C. Cupkin, V. Contardo-Jara, S. Plugmacher, and M. L. Menone. 2017. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetusAustraloheros facetus. Environ. Toxicol. Chem 36 (3):699–708. doi:10.1002/etc.3574.
  • IUCN. 2022. The IUCN red list of threatened species. Version 2021-3. https://www.iucnredlist.org.
  • Jemec, T. T., A. Mozetic, B. Trebse, and P. Trebše. 2009. Hazard identification of imidacloprid to aquatic environment. Chemosphere 76 (7):907–14. doi:10.1016/j.chemosphere.2009.05.002.
  • Jenkins, J. A., K. R. Hartop, G. Bukhari, D. E. Howton, K. L. Smalling, S. V. Mize, M. L. Hladik, D. Johnson, R. O. Draugelis-Dale, and B. L. Brown. 2021. Juvenile African Clawed Frogs (Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin. Int. J. Mol. Sci. 22 (24):13291. doi:10.3390/ijms222413291.
  • Jeschke, P., R. Nauen, M. Schindler, and A. Elbert. 2011. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59 (7):2897–908. doi:10.1021/jf101303g.
  • Kocamaz, D., and E. Oruc. 2018. Assessment of synergistic toxicity of two commercial pesticides, thiamethoxam and lambda-cyhalothrin, on total antioxidant/oxidant status, oxidative stress index and somatic indices in different tissues of tilapia. Fresenius Environ. Bull. 27:2312–19.
  • Kundoo, A. A., S. A. Dar, M. Mushtaq, Z. Bashir, M. S. Dar, S. Gul, M. T. Ali, and S. Guizar. 2018. Role of neonicotinoids in insect pest management: A review. J. Entomol. Zool. Stud 6:333–39.
  • Lee‐Jenkins, S. S. Y., and S. A. Robinson. 2018. Effects of neonicotinoids on putative escape behavior of juvenile wood frogs (Lithobates sylvaticus) chronically exposed as tadpoles. Environ. Toxicology and Chemistry 37 (12):3115–23. doi:10.1002/etc.4284.
  • Malashichev, Y. B. 2002. Asymmetries in amphibians: A review of morphology and behaviour. Laterality 7 (3):197–217. doi:10.1080/13576500244000030.
  • Mateo-Sagasta, J., S. Marjani Zadeh, and H. Turral 2018. More people, more food, worse water? A global review of water pollution from agriculture. Published by Food and Agriculture Organization of the United Nations (FAO) and the International Water Management Institute.
  • Miles, J. C., J. Hua, M. S. Sepulveda, C. H. Krupke, and J. T. Hoverman. 2017. Effects of clothianidin on aquatic communities: Evaluating the impacts of lethal and sublethal exposure to neonicotinoids. PLoS ONE 12 (3):e0174171. doi:10.1371/journal.pone.0174171.
  • Milleman, D. R., H. Genievich, E. Reilly, A. Rush, S. Goodrow, and N. A. Procopio. 2020. A review of neonicotinoid insecticides and occurrence in New Jersey surface water and groundwater. Research project summary. New Jersey Department of Environmental Protection, Division of Science and Research. https://www.nj.gov/dep/dsr/wq/neonicotinoid-insecticides-rps.pdf.
  • Moe, T. A. 2017. Sublethal and lethal effects of a neonicotinoid pesticide on the development of Northern leopard frog tadpoles. All NMU Master’s Theses. 153. https://commons.nmu.edu/theses/153.
  • Mohanty, B., S. P. Pandey, and K. Tsutsui. 2017. Thyroid disrupting pesticides impair the hypothalamic-pituitary-testicular axis of a wildlife bird amandava. Reprod. Toxicol. 71:32–41. doi:10.1016/j.reprotox.2017.04.006.
  • Montiel-León, J. M., G. Munoz, S. V. Duy, D. T. Do, M.-A. Vaudreuil, K. Goeury, F. Guillemette, M. Amyot, and S. Sauvé. 2019. Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environ. Pollut. 250:29–39. doi:10.1016/j.envpol.2019.03.125.
  • Morrissey, C. A., P. Mineau, J. H. Devries, F. Sanchez-Bayo, L. Matthias, M. C. Cavallaro, and K. Liber. 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ Int 74:291–303. doi:10.1016/j.envint.2014.10.024.
  • Naiel, M. A. E., N. E. M. Ismael, S. A. A. Abd El-Hameed, and M. S. Amer. 2020. The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture 523:735219. doi:10.1016/j.aquaculture.2020.735219.
  • Nations, U. 2019. Globally Harmonized System of Classification and Labelling of Chemicals. 8nd. Available fromhttps://unece.org/ghs-rev8-2019
  • Obregon, D., G. Pederson, A. Taylor, K. Poveda, and N. Desneux. 2022. The pest control and pollinator protection dilemma: The case of thiamethoxam prophylactic applications in squash crops. PLos ONE 17 (5):e0267984. doi:10.1371/journal.pone.0267984.
  • OECD. 1992. Fish Acute Toxicity Test. In OECD Organisation for Co-operation and Economic Development. Test Guideline, 203. Paris: OECD Publishing.
  • Ortiz-Santaliestra, M. E., J. P. Maia, A. Egea-Serrano, and I. Lopes. 2018. Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment. Ecotoxicology 27 (7):819–33. doi:10.1007/s10646-018-1911-y.
  • Pandey, S. P., and B. Mohanty. 2015. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary–thyroid axis of a wildlife bird. Chemosphere 122:227–34. doi:10.1016/j.chemosphere.2014.11.061.
  • Parikh, D. B. 2014. Behavioural responses to acute exposure of imidacloprid and Curzate on Labeo rohita (Hamilton, 1822). Int J Open Sci Res 2:1–12.
  • Paunescu, A., L. C. Soare, I. Fierascu, R. C. Fierascu, C. F. Mihaescu, L. Tofan, and C. M. Ponepal. 2022. Ecotoxicological studies on the action of Actara 25 WG insecticide on Prussian carp (Carassius gibelio) and marsh frog (Pelophylax ridibundus). Toxics 10 (3):114. doi:10.3390/toxics10030114.
  • Peltzer, P. M., R. C. Lajmanovich, L. C. Sanchez, A. M. Attademo, C. M. Junges, C. Bionda, L. Martino, and A. Bassó. 2011. Morphological abnormalities in amphibian populations from the mid-eastern of Argentina. Herpetol Conserv Biol 6:432–42.
  • Pérez-Iglesias, J. M., D. A. Ruiz, C. Nikoloff, N. Dury, L. Soloneski, S. Natale, and G. S. Larramendy, M.L. 2014. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 104:120–26. doi:10.1016/j.ecoenv.2014.03.002.
  • Perez, D. J., F. G. Iturburu, G. Calderon, L. A. E. Oyesqui, E. DeGeronimo, and V. C. Aparicio. 2021. Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 263:128061. doi:10.1016/j.chemosphere.2020.128061.
  • Pérez, D. J., E. Okada, E. De Gerónimo, M. L. Menone, V. C. Aparicio, and J. L. Costa. 2017. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Environ. Toxicol. Chem 36 (12):3206–16. doi:10.1002/etc.3897.
  • Pietrzak, D., J. Kania, E. Kmiecik, G. Malina, and K. Wator. 2020. Fate of selected neonicotinoid insecticides in soil-water systems: Current state of the art and knowledge gaps. Chemosphere 255:126981. doi:10.1016/j.chemosphere.2020.126981.
  • Pimentel, D. 2009. Pesticides and pest controls. R. Peshin and A. K. Dhawaned., Integrated Pest Management, 83–87. vol. 1: Innovation-Development Process. Springer.
  • Pochini, K. M., and J. T. Hoverman. 2017. Reciprocal effects of pesticides and pathogens on amphibian hosts: The importance of exposure order and timing. Environ. Pollut. 221:359–66. doi:10.1016/j.envpol.2016.11.086.
  • Poliserpi, M. B., D. S. Cristos, and J. C. Brodeur. 2021. Imidacloprid seed coating poses a risk of acute toxicity to small farmland birds: A weight-of-evidence analysis using data from the grayish baywing Agelaioides badius. Sci. Total Environ. 763:142957. doi:10.1016/j.scitotenv.2020.142957.
  • Pretty, J., and Z. P. Bharucha. 2015. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 115 (1):152–82. doi:10.3390/insects6010152.
  • Robinson, S. A., R. J. Chlebak, S. D. Young, R. L. Dalton, M. J. Gavel, R. S. Prosser, A. J. Bartlett, and S. R. De Solla. 2021. Clothianidin alters leukocyte profiles and elevates measures of oxidative stress in tadpoles of the amphibian Rana Pipiens. Environ. Pollut. 284:117149. doi:10.1016/j.envpol.2021.117149.
  • Robinson, S. A., M. J. Gavel, S. D. Richardson, R. J. Chlebak, D. Milotic, J. Koprivnikar, and M. R. Forbes. 2019. Sub-chronic exposure to a neonicotinoid does not affect susceptibility of larval leopard frogs to infection by trematode parasites, via either depressed cercarial performance or host immunity. Parasitol Res 118 (9):2621–33. doi:10.1007/s00436-019-06385-9.
  • Robinson, S. A., S. D. Richardson, R. L. Dalton, F. Maisonneuve, V. L. Trudeau, B. D. Pauli, and S. Y. Lee-Jenkins. 2017. Sublethal effects on wood frogs chronically exposed to environmentally relevant concentrations of two neonicotinoid insecticides. Environ. Toxicol. Chem 36 (4):1101–09. doi:10.1002/etc.3739.
  • Roelants, K., D. J. Gower, M. Wilkinson, S. P. Loader, S. D. Biju, K. Guillaume, L. Moriau, and F. Bossuyt. 2007. Global patterns of diversification in the history of modern amphibians. Proc. Natl. Acad. Sci. U.S.A. 104 (3):887–92. doi:10.1073/pnas.0608378104.
  • Ruiz, D. A., C. Pérez-Iglesias, J. M. Nikoloff, N. Natale, G. S. Soloneski, and S. Larramendy. 2014. Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol Indicat 45:632–39. doi:10.1016/j.ecolind.2014.05.034.
  • Saka, M., and N. Tada. 2021. Acute and chronic toxicity tests of systemic insecticides, four neonicotinoids and fipronil, using the tadpoles of the western clawed frog Silurana Tropicalis. Chemosphere 270:129418. doi:10.1016/j.chemosphere.2020.129418.
  • Sanchez-Bayo, F. 2011. Impacts of agricultural pesticides on terrestrial ecosystems. In Ecological Impacts of Toxic Chemicals, 63–87. Sharjah, U.A.E.: Bentham Science Publishers.
  • Sandstrom, M. W., L. H. Nowell, B. J. Mahler, and P. C. Van Meter. 2022. New-generation pesticides are prevalent in California’s Central Coast streams. Sci Total Environ 806:150683.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Meth 9 (7):671–75. doi:10.1038/nmeth.2089.
  • Silvanima, J., S. Sunderman‑Barnes, R. Copeland, A. Woeber, and E. Miller. 2022. Regional extent, environmental relevance, and spatiotemporal variability of neonicotinoid insecticides detected in Florida’s ambient flowing waters. Environ. Monit. Assess. 194:416.
  • Simon-Delso, N., V. Amaral-Rogers, L. P. Belzunces, J. M. Bonmatin, M. Chagnon, C. Downs, L. Furlan, D. W. Gibbons, C. Giorio, V. Girolami, et al. 2015. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22 (1):5–34. doi:10.1007/s11356-014-3470-y.
  • Sjerps, R. M. A., P. J. F. Kooij, A. V. Loon, and A. P. Van Wezel. 2019. Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235:510–18. doi:10.1016/j.chemosphere.2019.06.207.
  • Solomon, K. R., and G. L. Stephenson. 2017. Quantitative weight of evidence assessment of higher-tier studies on the toxicity and risks of neonicotinoid insecticides in honeybees 1: Methods. J Toxicol Environ Health B 20 (6–7):316–29. doi:10.1080/10937404.2017.1388563.
  • Sparks, T. C. 2013. Insecticide discovery: An evaluation and analysis. Pest Biochem Physiol 107 (1):8–17. doi:10.1016/j.pestbp.2013.05.012.
  • Stephenson, G. L., and K. R. Solomon. 2017. Quantitative weight of evidence assessment of higher-tier studies on the toxicity and risks of neonicotinoids in honeybees. 2. Imidacloprid. J Toxicol Environ Health B 20 (6–7):330–45. doi:10.1080/10937404.2017.1388564.
  • Stoyanova, S., V. Yancheva, I. Iliev, T. Vasileva, V. Bivolarski, I. Velcheva, and E. Georgieva. 2016. Biochemical, histological and histochemical changes in Aristichthys nobilis Rich. liver exposed to thiamethoxam. Periodicum Biologorum 118 (1):26–36. doi:10.18054/pb.v118i1.2828.
  • Stoyanova, S., V. Yancheva, I. Velcheva, P. Atanasova, and E. Georgieva. 2015. Thiamethoxam causes histochemical changes in the liver of Aristichthys nobilis Rich., 1845. J. BioSci. Biotechnol. 4:321–25.
  • Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman, and R. W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306 (5702):1783–85. doi:10.1126/science.1103538.
  • Suarez, R., A. Goijman, S. Cappelletti, L. Solari, D. Cristos, D. E. Rojas, P. Krug, K. Babbitt, and G. Gavier-Pizarro. 2020. Combined effects of agrochemical contamination and forest loss on anuran diversity in agroecosystems of east-central Argentina. Sci. Total Environ. 759:143435. doi:10.1016/j.scitotenv.2020.143435.
  • Suarez, R., M. Zaccagnini, K. Babbitt, N. Calamari, G. Natale, A. Cerezo Blandón, N. Codugnello, B. T. Damonte, J. Vera-Candioti, and J. Gavier-Pizarro. 2016. Anuran responses to spatial patterns of agricultural landscapes in Argentina. Landscape Ecol 31 (10):2485–505. doi:10.1007/s10980-016-0426-2.
  • Sweeney, M. R., C. M. Thompson, and V. D. Popescu. 2021. Sublethal, Behavioral, and Developmental Effects of the Neonicotinoid Pesticide Imidacloprid on Larval Wood Frogs (Rana sylvatica). Environ Toxicol Chem 40 (7): 1840–1849. doi:10.1002/etc.5047.
  • Tata, J. R. 2006. Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Mol. Cell. Endocrinol 246 (1–2):10–20. doi:10.1016/j.mce.2005.11.024.
  • Thambirajah, A. A., E. M. Koide, J. J. Imbery, and C. C. Helbing. 2019. Contaminant and environmental influences on thyroid hormone action in amphibian metamorphosis. Front Endocrinol 10:276. doi:10.3389/fendo.2019.00276.
  • Tomizawa, M., and J. E. Casida. 2005. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45 (1):247–68. doi:10.1146/annurev.pharmtox.45.120403.095930.
  • USEPA. 2012. Ecological Effects Test OCSPP 850.2000: Background and Special Considerations- Tests with Terrestrial Wildlife. Office of Chemical Safety and Pollution Prevention (7101). EPA 712-C-026. Washington, DC.
  • van der Sluijs, J. P., V. Amaral-Rogers, L. P. Belzunces, V. L. Bijleveld, M. F. I. J. Bonmatin, J.-M. Chagnon, M. Downs, C. A. Furlan, L. Gibbons, D. W. Giorio, et al. 2015. Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ. Sci. Pollut. Res. 22 (1):148–54. doi:10.1007/s11356-014-3229-5.
  • Victoria, S., M. Hein, E. Harrahy, and T. C. King-Heiden. 2022. Potency matters: Impacts of embryonic exposure to nAChR agonists thiamethoxam and nicotine on hatching success, growth, and neurobehavior in larval zebrafish. J Toxicol Environ Health A 85 (18):767–82. doi:10.1080/15287394.2022.2081641.
  • Wang, X., A. Anadón, W. Qinghua, F. Qiao, I. Ares, M.-R. Martínez-Larrañaga, Z. Yuan, and M.-A. Martínez. 2018. Mechanism of neonicotinoid toxicity: Impact on oxidative stress and metabolism. Annu Rev Pharmacol Toxicol 58 (1):471–507. doi:10.1146/annurev-pharmtox-010617-052429.
  • Wang, Y., P. Xu, J. Chang, W. Li, L. Yang, and H. Tian. 2020. Unraveling the toxic effects of neonicotinoid insecticides on the thyroid endocrine system of lizards. Environ. Pollut 258:113731. doi:10.1016/j.envpol.2019.113731.
  • Wang, Y., G. Yang, D. Dai, Z. Xu, L. Cai, Q. Wang, and Y. Yu. 2017. Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae. Environ. Sci. Pollut. Res. 24 (5):4528–36. doi:10.1007/s11356-016-8205-9.
  • Wang, J., R. Yin, Y. Liu, B. Wang, N. Wang, P. Xiao, T. Xiao, and H. Hirai. 2022. Meta‑analysis of neonicotinoid insecticides in global surface waters. Environ. Sci. Poll. Res. doi:10.1007/s11356-022-22270-y.
  • Wood, T. J., and D. Goulson. 2017. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ. Sci. Pollut. Res. 24 (21):17285–325. doi:10.1007/s11356-017-9240-x.
  • Xia, X., X. Xia, W. Huo, H. Dong, L. Zhang, and Z. Chang. 2016. Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus). Environ. Toxicol. Pharmacol. 45:132–39. doi:10.1016/j.etap.2016.05.030.
  • Yamamoto, I., and J. E. Casida. 1999. Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Japan: Springer International Publishing.
  • Yang, G., L. Lv, S. Di, X. Li, H. Weng, X. Wang, and Y. Wang. 2021. Combined toxic impacts of thiamethoxam and four pesticides on the rare minnow (Gobiocypris rarus). Environ. Sci. Pollut. Res. 28 (5):5407–16. doi:10.1007/s11356-020-10883-0.
  • Yan, S., Z. Meng, S. Tian, M. Teng, J. Yan, M. Jia, M. Li, Z. Zhou, and W. Zhu. 2020. Neonicotinoid insecticides exposure causes amino acid metabolism disorders, lipid accumulation and oxidative stress in ICR mice. Chemosphere 246:125661. doi:10.1016/j.chemosphere.2019.125661.
  • Yan, S. H., J. H. Wang, L. S. Zhu, A. M. Chen, and J. Wang. 2015. Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio Rerio) livers. Environ. Toxicol 31 (12):2006–15. doi:10.1002/tox.22201.
  • Yi, X., C. Zhang, H. Lui, W. Renren, D. Tian, J. Ruan, T. Zhang, M. Huang, and G. Ying. 2019. Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China. Environ Pollut 251:892–900. doi:10.1016/j.envpol.2019.05.062.
  • Zhang, J., D. Ma, Q. Xiong, S. Qiu, G. Huang, W. Shi, and G. Ying. 2021. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. Ecotoxicology and Environmental Safety 227:112917. doi:10.1016/j.ecoenv.2021.112917.
  • Zhelev, Z., S. Tsonev, and P. Boyadzhiev. 2022. Using of fluctuating asymmetry in adult Pelophylax ridibundus (Amphibia: Anura:Ranidae) meristic traits as a method for assessing developmental stability of populationand environmental quality of their habitat: Industrial area in southern Bulgaria. Turk. J. Zool 46 (2):220–27. doi:10.55730/1300-0179.3050.
  • Zhu, L., W. Li, J. Zha, L. Li, and Z. Wang. 2019. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): Docking study, hormone levels, histology, and transcriptional responses. Ecotoxicol. Environ. Saf. 185:109683. doi:10.1016/j.ecoenv.2019.109683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.