303
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Using native fish in eco-genotoxic assessment of heavy metal contamination pollution arising from nearby large Brazilian rivers

, , , ORCID Icon & ORCID Icon

References

  • Abidli, A., Y. Huang, Z. Ben Rejeb, A. Zaoui, and C. B. Park. 2022. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere 292:133102. doi:10.1016/j.chemosphere.2021.133102.
  • Aich, A., A. R. Goswami, U. S. Roy, and S. K. Mukhopadhyay. 2015. Ecotoxicological assessment of tannery effluent using guppy fish (Poecilia reticulata) as an experimental model: A biomarker study. J. Toxicol. Environ. Health Part A 78 (4):278–86. doi:10.1080/15287394.2014.960045.
  • Al-Sabati, K., and C. D. Metcalfe. 1995. Fish micronuclei for assessing genotoxicity in water. Mutat. Res. 343 (2–3):121–2135. doi:10.1016/0165-1218(95)90078-0.
  • APHA, AWWA, WPCF. 1998. Standard method for examination of water and wastewater. 20th ed. Washington DC: American Public Health Association.
  • Arruda-Santos, R. H., B. V. M. Costa, P. S. M. Carvalho, and E. Zanardi-Lamardo. 2023. Sewage contamination assessment in an urbanized tropical estuary in Northeast Brazil using elemental, isotopic and molecular proxies. Environ. Pollut. 317:120726. doi:10.1016/j.envpol.2022.120726.
  • Asllani, F. H., M. Schürz, N. Bresgen, P. M. Eckl, and A. J. Alija. 2019. Genotoxicity risk assessment in fish (Rutilus rutilus) from two contaminated rivers in the Kosovo. Sci. Total Environ. 676:429–35. doi:10.1016/j.scitotenv.2019.04.321.
  • Azqueta, A., and A. R. Collins. 2013. The essential comet assay: A comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 87 (6):949–68. doi:10.1007/s00204-013-1070-0.
  • Bai, W., Y. Takao, and T. Kubo. 2020. Evaluation of genotoxicity potential of household effluents from onsite wastewater treatment systems using umu test. J. Toxicol. Environ. Health Part A 83 (1):36–44. doi:10.1080/15287394.2020.1719447.
  • Baldissera, M. D., C. F. Souza, D. C. Barroso, R. S. Pereira, K. O. Alessio, C. Bizzi, B. Baldisserotto, and A. L. Val. 2020. Acute exposure to environmentally relevant concentrations of copper affects branchial and hepatic phosphoryl transfer network of Cichlasoma amazonarum: Impacts on bioenergetics homeostasis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 238:108846. doi:10.1016/j.cbpc.2020.108846.
  • Barbosa, F. 2017. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. J. Toxicol. Environ. Health 80 (3):137–44. A. doi:10.1080/15287394.2016.1259475.
  • Baršienė, J., L. Butrimavičienė, W. Grygiel, T. Lang, A. Michailovas, and T. Jackūnas. 2014. Environmental genotoxicity and cytotoxicity in flounder (Platichthys flesus), herring (Clupea harengus) and Atlantic cod (Gadus morhua) from chemical munitions dumping zones in the southern Baltic Sea. Mar. Environ. Res. 96:56–67. doi:10.1016/j.marenvres.2013.08.012.
  • Bianchi, E., T. Dalzochio, L. A. R. Simões, G. Z. P. Rodrigues, C. E. M. Silva, G. Gehlen, C. A. Nascimento, F. R. Spilki, A. L. Ziulkoski, and L. B. Silva. 2019. Water quality monitoring of the Sinos River Basin, Southern Brazil, using physicochemical and microbiological analysis and biomarkers in laboratory-exposed fish. Ecohydrol. Hydrobiol 19 (3):328–33. doi:10.1016/j.ecohyd.2019.05.002.
  • Bolognesi, C., and M. Hayashi. 2011. Micronucleus assay in aquatic animals. Mutagenesis 26 (1):205–13. doi:10.1093/mutage/geq073.
  • Brasil. CONAMA. Conselho Nacional do Meio Ambiente. Resolução CONAMA n. 430, de 13 de maio de 2011. Dispõe sobre condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente - CONAMA. Brasília, 2011. Available in: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Accessed 26 January 2022.
  • Çakal Arslan, Ö., M. Boyacioğlu, H. Parlak, S. Katalay, and M. A. Karaaslan. 2015. Assessment of micronuclei induction in peripheral blood and gill cells of some fish species from Aliağa Bay Turkey. Mar. Pollut. Bull. 94 (1–2):48–54. doi:10.1016/j.marpolbul.2015.03.018.
  • Campos Júnior, E. O., D. F. Araújo, H. N. Souto, C. F. Campos, and B. B. Pereira. 2020. Contamination and health risks assessment in a dam in the southeast region of Brazil using ecotoxicological methods. J. Toxicol. Environ. Health Part A 83 (10):404–11. doi:10.1080/15287394.2020.1767250.
  • Campos, C. F., S. Morelli, E. O. De Campos Júnior, V. S. V. Santos, C. R. De Morais, M. C. Cunha, H. N. Souto, L. A. Pavanin, A. M. Bonetti, and B. B. Pereira. 2019. Assessment of the genotoxic potential of water courses impacted by wastewater treatment effluents using micronucleus assay in plants from the species Tradescantia. J. Toxicol. Environ. Health Part A 82 (13):752–59. doi:10.1080/15287394.2019.1648345.
  • Campos, E. O., R. G. O. Silva, B. B. Pereira, H. N. Souto, C. F. Campos, J. C. Nepomuceno, and S. Morelli. 2016. Assessment of genotoxic, mutagenic, and recombinogenic potential of water resources in the Paranaíba River basin of Brazil: A case study. J. Toxicol. Environ. Health Part A 79 (24):1190–200. doi:10.1080/15287394.2016.1228490.
  • Çavaş, T., and S. Ergene-gözükara. 2005. Micronucleus test in fish cells: A bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environ. Mol. Mutagen. 46 (1):64–70. doi:10.1002/em.20130.
  • Chagas, T. Q., T. G. da Silva Alvarez, M. F. Montalvão, C. Mesak, T. L. Rocha, A. P. da Costa Araújo, and G. Malafaia. 2019. Behavioral toxicity of tannery effluent in zebrafish (Danio rerio) used as model system. Sci. Total Environ. 685:923–33. doi:10.1016/j.scitotenv.2019.06.253.
  • Costa-Silva, D. G., M. E. Nunes, G. L. Wallau, I. K. Martins, A. P. Zemolin, L. C. Cruz, N. R. Rodrigues, A. R. Lopes, T. Posser, and J. L. Franco. 2015. Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome. Environ. Sci. Pollut. Res 22 (20):15526–35. doi:10.1007/s11356-015-4737-7.
  • Da Cuña, R. H., F. L. Lo Nostro, V. Shimabukuro, P. M. Ondarza, and K. S. B. Miglioranza. 2020. Bioaccumulation and distribution behavior of endosulfan on a cichlid fish: Differences between exposure to the active ingredient and a commercial formulation. Environ. Toxicol. Chem. 39 (3):604–11. doi:10.1002/etc.4643.
  • Da Cuña, R. H., M. Pandolfi, G. Genovese, Y. Piazza, M. Ansaldo, and F. L. L. Nostro. 2013. Endocrine disruptive potential of endosulfan on the reproductive axis of Cichlasoma dimerus (Perciformes, Cichlidae). Aquat. Toxicol. 126:299–305. doi:10.1016/j.aquatox.2012.09.015.
  • Da Cuña, R. H., G. R. Vázquez, L. Dorelle, E. M. Rodríguez, R. G. Moreira, and F. L. L. Nostro. 2016. Mechanism of action of endosulfan as disruptor of gonadal steroidogenesis in the cichlid fish Cichlasoma dimerus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 187:74–80. doi:10.1016/j.cbpc.2016.05.008.
  • D’Agostini, F., and S. La Maestra. 2021. Micronuclei in Fish Erythrocytes as Genotoxic Biomarkers of Water Pollution: An Overview. Rev. Environ. Contam. Toxicol. 258:195–240. doi:10.1007/398_2021_76.
  • De Oliveira, E. C. M., E. S. Caixeta, V. S. V. Santos, and B. B. Pereira. 2021. 2021 arsenic exposure from groundwater: Environmental contamination, human health effects, and sustainable solutions. J. Toxicol. Environ. Health B 24 (3):119–35. doi:10.1080/10937404.2021.1898504.
  • de Paula, A. A., W. E. Risso, and C. B. D. R. Martinez. 2021. Effects of copper on an omnivorous (Astyanax altiparanae) and a carnivorous fish (Hoplias malabaricus): A comparative approach. Aquat. Toxicol. 237:105874. doi:10.1016/j.aquatox.2021.105874.
  • Diehl, K. H., R. Hull, D. Morton, R. Pfister, Y. Rabemampianina, D. Smith, J. M. Vidal, C. van de Vorstenbosch, and European Federation of Pharmaceutical Industries Association and European Centre for the Validation of Alternative Methods. 2001. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21 (1):15–23. doi:10.1002/jat.727.
  • Dixon, D. R., A. M. Pruski, L. R. Dixon, and A. N. Jha. 2002. Marine invertebrate eco-genotoxicology: A methodological overview. Mutagenesis 17 (6):495–507. doi:10.1093/mutage/17.6.495.
  • Dorelle, L. S., R. H. Cuna, D. E. Sganga, G. R. Vazquez, L. L. N. Greco, and F. L. L. 2020. Fluoxetine exposure disrupts food intake and energy storage in the cichlid fish Cichlasoma dimerus (Teleostei, Chchliformes). Chemosphere 238:124609. doi:10.1016/j.chemosphere.2019.124609.
  • Dos Santos, D. R., F. Y. Yamamoto, F. Filipak Neto, M. A. Randi, J. E. Garcia, D. D. Costa, S. Liebel, S. X. Campos, C. L. Voigt, and C. A. de Oliveira Ribeiro. 2016. The applied indicators of water quality may underestimate the risk of chemical exposure to human population in reservoirs utilized for human supply—southern Brazil. Environ. Sci. Pollut. Res. Int. 23 (10):9625–39. doi:10.1007/s11356-015-5995-0.
  • Eissa, B. L., N. A. Ossana, L. Ferreira, and A. Saliban. 2010. Quantitative behavioral parameters as toxicity biomarkers: Fish responses to waterborne cadmium. Arch. Environ. Contam. Toxicol. 58 (4):1032–39. doi:10.1007/s00244-009-9434-4.
  • Fenech, M. 1997. The advantages and disadvantages of the cytokinesis-block micronucleus method. Mutat. Res. 392 (1–2):11–18. doi:10.1016/s0165-1218(97)00041-4.
  • Ferreira, M. S., M. P. F. Fontes, A. A. Pacheco, H. N. Lima, and J. Z. L. Santos. 2020. Risk assessment of trace element pollution of Manus urban rivers. Sci. Total Environ. 709:134471. doi:10.1016/j.scitotenv.2019.134471.
  • Francisco, C. M., S. M. Bertolino, R. J. De Oliveira Júnior, S. Morelli, and B. B. Pereira. 2019. Genotoxicity assessment of polluted urban streams using a native fish Astyanax altiparanae. J. Toxicol. Environ. Health Part A 82 (8):514–23. doi:10.1080/15287394.2019.1624235.
  • Grisolia, C. K., and F. L. Starling. 2001. Micronuclei monitoring of fishes from Lake Paranoá, under influence of sewage treatment plant discharges. Mutat. Res. 491 (1–2):39–44. doi:10.1016/S1383-5718(00)00168-6.
  • Holland, N., C. Bolognesi, M. Kirsch-Volders, S. Bonassi, E. Zeiger, S. Knasmueller, and M. Fenech. 2008. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutat. Res. 659 (1–2):93–108. doi:10.1016/j.mrrev.2008.03.007.
  • ISO 11466. 1995. Soil Quality e Extraction of Trace Elements Soluble in Aqua Regia. Geneva, Switzerland: International Organization for Standardization.
  • Kushwaha, B., S. Pandey, S. Sharma, R. Srivastava, R. Kumar, N. S. Nagpure, A. Dabas, and S. Srivastava. 2012. In situ assessment of genotoxic and mutagenic potential of polluted river water in Channa punctatus and Mystus vittatus. Int. Aquat. Res 4 (1):16. doi:10.1186/2008-6970-4-16.
  • Latif, F., R. Iqbal, F. Ambreen, S. Kousar, T. Ahmed, and S. Aziz. 2024. Studies on bioaccumulation patterns, biochemical and genotoxic effects of copper on freshwater fish Catla catla: An in vivo analysis. Braz. J. Biol. 84:e256905. doi:10.1590/1519-6984.256905.
  • Lushchak, V. 2016. Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiol. Biochem. 42 (2):711–47. doi:10.1007/s10695-015-0171-5.
  • Madilonga, R. T., J. N. Edokpayi, E. T. Volenzo, O. S. Durowoju, and J. O. Odiyo. 2021. Water quality assessment and evaluation of human health risk in Mutangwi River, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 24 (13):6765. doi:10.3390/ijerph18136765.
  • Mahboob, S., H. F. Alkkahem Al-Balwai, F. Al-Misned, K. A. Al-Ghanim, and Z. Ahmad. 2014. A study on the accumulation of nine heavy metals in some important fish species from a natural reservoir in Riyadh, Saudi Arabia. Toxicol. Environ. Chem. 96 (5):783–98. doi:10.1080/02772248.2014.957485.
  • Martins, G. C., E. C. Silva Junior, S. J. Ramos, C. W. Maurity, P. K. Sahoo, R. Dall’Agnol, and L. R. G. Guilherme. 2021. Bioavailability of copper and nickel in naturally metal-enriched soils of Carajás Mining Province, Eastern Amazon, Brazil. Environ. Monit. Assess. 193 (5):526. doi:10.1007/s10661-021-09056-4.
  • Maruska, K. P., and R. D. Fernald. 2012. Contextual chemosensory urine signaling in an African cichlid fish. J. Exp. Biol. 215 (1):68–74. doi:10.1242/jeb.062794.
  • Matono, P., T. Batista, E. Sampaio, and M. Ilhéu. 2019. Effects of agricultural land use on the ecohydrology of small- medium Mediterranean River Basins: Insights from a case study in the south of Portugal. Land Use - Assessing the Past, Envisioning the Future. IntechOpen, Ed. 10.5772/intechopen.79756
  • Matos, L. A., A. C. S. Cunha, A. A. Sousa, J. P. R. Maranhão, N. R. S. Santos, M. M. C. Gonçalves, S. M. M. M. Dantas, J. M. C. E. Sousa, A. P. Peron, F. C. C. D. Silva, et al. 2017. The influence of heavy metals on toxicogenetic damage in a Brazilian tropical river. Chemosphere 185:852–59. doi:10.1016/j.chemosphere.2017.07.103.
  • Meijide, F. J., G. R. Vázquez, Y. G. Piazza, P. A. Babay, R. F. Itria, and F. L. L. Nostro. 2016. Effects of waterborne exposure to 17β-estradiol and 4-tert-octylphenol on early life stages of the South American cichlid fish Cichlasoma dimerus. Ecotoxicol. Environ. Saf. 124:82–90. doi:10.1016/j.ecoenv.2015.10.004.
  • Morais, C. R., S. M. Carvalho, G. R. Araujo, H. N. Souto, A. M. Bonetti, S. Morelli, and E. O. Campos Júnior. 2016. Assessment of water quality and genotoxic impact by toxic metals in Geophagus brasiliensis. Chemosphere 152:328–34. doi:10.1016/j.chemosphere.2016.03.001.
  • Nelson, J. S., T. C. Grande, and M. V. Wilson. 2016. Fishes of the World, p. 752. New Jersey: John Wiley & Sons.
  • Nemery, B., and C. Banza Lubaba Nkulu. 2018. Assessing exposure to metals using biomonitoring: Achievements and challenges experienced through surveys in low- and middle-income countries. Toxicol. Lett. 298:13–18. doi:10.1016/j.toxlet.2018.06.004.
  • Organization for Economic Cooperation and Development. 1992. Guidelines for the testing of chemicals. In Section 2: Effects on biotic systems. Test number 203, 9. Paris, France: Acute toxicity OECD.
  • Organization for Economic Cooperation and Development. 2012. Fish Toxicity Testing Framework. OECD Series on Testing and Assessment, No. 171, 174. Paris, France: OECD.
  • Piazza, Y., M. Pandolfi, R. Da Cuña, G. Genovese, and F. L. Nostro. 2015. Endosulfan affects GnRH cells in sexually differentiated juveniles of the perciform Cichlasoma dimerus. Ecotoxicol. Environ. Saf. 116:150–59. doi:10.1016/j.ecoenv.2015.03.013.
  • Piazza, Y. G., M. Pandolfi, and F. L. L. Nostro. 2011. Effect of the organochlorine pesticide endosulfan on GnRH and gonadotrope cell populations in fish larvae. Arch. Environ. Contam. Toxicol. 61 (2):300–10. doi:10.1007/s00244-010-9621-3.
  • Pollo, F. E., C. L. Bionda, Z. A. Salinas, N. E. Salas, and A. L. Martino. 2015. Common toad Rhinella arenarum (Hensel, 1867) and its importance in assessing environmental health: Test of micronuclei and nuclear abnormalities in erythrocytes. Environ. Monit. Assess. 187 (9):581. doi:10.1007/s10661-015-4802-1.
  • Praveen, N. C., A. Rajesh, M. Madan, V. R. Chaurasia, N. V. Hiremath, and A. M. Sharma. 2014. In vitro evaluation of antibacterial efficacy of pineapple extract (bromelain) on periodontal pathogens. J. Int. Oral Health 6 (5):96–98.
  • Reyes, E. S., J. J. Aristizabal Henao, K. M. Kornobis, R. M. Hanning, S. E. Majowicz, K. Liber, K. D. Stark, G. Low, H. K. Swanson, and B. D. Laird. 2017. Associations between omega-3 fatty acids, selenium content, and mercury levels in wild-harvested fish from the Dehcho Region, Northwest Territories, Canada. J. Toxicol. Environ. Health Part A 80 (1):18–31. doi:10.1080/15287394.2016.1230916.
  • Sabale, S. R., B. V. Tamhankar, M. M. Dongare, and B. S. Mohite. 2012. Extraction, determination and bioremediation of heavy metal ions and pesticide residues from lake water. J. Bioremed. Biodegrad 3 (04):143. doi:10.4172/2155-6199.1000143.
  • Schmid, W. 1975. The micronucleus test. Mutat. Res. 1 (1):9–15. doi:10.1016/0165-1161(75)90058-8.
  • Severo, E. S., A. T. Marins, C. Cerezer, D. Costa, M. Nunes, O. D. Prestes, R. Zanella, and V. L. Loro. 2020. Ecological risk of pesticide contamination in a Brazilian river located near a rural area: A study of biomarkers using zebrafish embryos. Ecotoxicol. Environ. Saf. 190:110071. doi:10.1016/j.ecoenv.2019.110071.
  • Shabbir, Z., A. Sardar, A. Shabbir, G. Abbas, S. Shamshad, S. Khalid, Natasha, G. Murtaza, C. Dumat, and M. Shahid. 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 259:127436. doi:10.1016/j.chemosphere.2020.127436.
  • Silva, S. V., A. H. Dias, E. S. Dutra, A. L. Pavanin, S. Morelli, and B. B. Pereira. 2016. The impact of water pollution on fish species in southeast region of Goiás, Brazil. J. Toxicol. Environ. Health Part A 79 (1):8–16. doi:10.1080/15287394.2015.1099484.
  • Singh, M., H. Khan, Y. Verma, and S. V. S. Rana. 2019. Distinctive fingerprints of genotoxicity induced by As, Cr, Cd, and Ni in a freshwater fish. Environ. Sci. Pollut. Res. Int. 26 (19):19445–52. doi:10.1007/s11356-019-05274-z.
  • Sobrino-Figueroa, A. 2018. Toxic effect of commercial detergents on organisms from different trophic levels. Environ. Sci. Pollut. Res 25 (14):13283–91. doi:10.1007/s11356-016-7861-0.
  • Stern, B. R., M. Solioz, D. Krewski, P. Aggett, T. -C. Aw, S. Baker, K. Crump, M. Dourson, L. Haber, R. Hertzberg, et al. 2007. Copper and human health: Biochemistry, genetics, and strategies for modelling dose-response relationships. J. Toxicol. Environ. Health B 10 (3):157–222. doi:10.1080/10937400600755911.
  • Strbac, S., M. Kasanin-Grubin, B. Jovancićevic, and P. Simonovic. 2015. Bioaccumulation of heavy metals and microelements in silver bream (Brama brama L.), northern pike (Esox lucius L.), sterlet (Acipenser ruthenus L.), and common carp (Cyprinus carpio L.) from Tisza River, Serbia. J. Toxicol. Environ. Health Part A 78 (11):663–65. doi:10.1080/15287394.2015.1023406.
  • Tolbert, P. E., C. M. Shy, and J. W. Allen. 1991. Micronuclei and other nuclear anomalies in buccal smears: A field test in snuff users. Am. J. Epidemiol. 134 (8):840–50. doi:10.1093/oxfordjournals.aje.a116159.
  • Udroiu, I., A. Sgura, L. Vignoli, M. A. Bologna, M. D’Amen, D. Salvi, A. Ruzza, A. Antoccia, and C. Tanzarella. 2015. Micronucleus test on Triturus carnifex as a tool for environmental biomonitoring. Environ. Mol. Mutagen. 56 (4):412–17. doi:10.1002/em.21914.
  • Vázquez, G. R., F. J. Meijide, and F. L. Nostro. 2016. Recovery of the reproductive capability following exposure to 4-tert-octylphenol in the neotropical cichlid fish Cichlasoma dimerus. B. Environ. Contam. Toxicol 96 (5):585–90. doi:10.1007/s00128-016-1766-y.
  • Vijitkul, P., M. Kongsema, T. Toommakorn, and V. Bullangpoti. 2022. Investigation of genotoxicity, mutagenicity, and cytotoxicity in erythrocytes of Nile tilapia (Oreochromis niloticus) after fluoxetine exposure. Toxicol. Rep 29:588–96. doi:10.1016/j.toxrep.2022.03.031.
  • Weber, A. A., C. F. Sales, F. de Souza Faria, R. M. C. Melo, N. Bazzoli, and E. Rizzo. 2020. Effects of metal contamination on liver in two fish species from a highly impacted neotropical river: A case study of the Fundão Dam, Brazil. Ecotoxicol. Environ. Saf. 190:110165. doi:10.1016/j.ecoenv.2020.110165.
  • Winkler, L. W. 1888. Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber. DtschChem. Ges.Ber. DtschChem. Ges. 21 (2):2843–55. doi:10.1002/cber.188802102122.
  • Xiao, Y., W. J. G. M. Peijnenburg, G. Chen, and M. G. Vijver. 2018. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. Sci. Total Environ. 610-611:1329–35. doi:10.1016/j.scitotenv.2017.08.188.
  • Zebral, Y. D., J. da Silva Fonseca, M. Roza, P. G. Costa, R. B. Robaldo, and A. Bianchini. 2020. Combining elevated temperature with waterborne copper: Impacts on the energy metabolism of the killifish Poecilia vivipara. Chemosphere 253:126631. doi:10.1016/j.chemosphere.2020.126631.
  • Zhong, C. C., T. Zhao, C. Hogstrand, F. Chen, C. C. Song, and Z. Luo. 2022. Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J. Nutr. Biochem. 100:108883. doi:10.1016/j.jnutbio.2021.108883.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.