499
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Methanolic fraction of Cassia fistula L. bark exhibits potential to combat oxidative stress and possess antiproliferative activity

, , , , , & show all

References

  • Akhtar, N., I.U.H. Mirza, and B. Mirza. 2018. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian J. Chem. 11 (8):1223–35. doi:10.1016/j.arabjc.2015.01.013.
  • Ali, M. A., H. A. Sagar, M. C. Khatun, A. K. Azad, K. Begum, and M. I. Wahed. 2012. Antihyperglycemic and analgesic activities of ethanolic extract of Cassia fistula (L.) stem bark. Int. J. Pharmaceut. Sci. Res. 3:416.
  • Alves, J. M., L. F. Leandro, J. M. Senedese, P. T. D Castro, D. E. Pereira, F. A. Resende, D. L. Campos, J. J. M. D Silva, E. A. Varanda, J. K. Bastos, et al. 2018. Antigenotoxicity properties of Copaifera multijuga oleoresin and its chemical marker, the diterpene (−)-copalic acid. J. Toxicol. Environ. Health Part A 81 (5):116–29. doi:10.1080/15287394.2017.1420505.
  • Baharara, H., A. T. Moghadam, A. Sahebkar, S. A. Emami, T. Tayebi, and A. H. Mohammadpour. 2021. The effects of ivy (Hedera helix) on respiratory problems and cough in humans: A review. Adv. Exp. Med. Biol. 1328:361–76.
  • Barzegar, A., A. A. Moosavi-Movahedi, and J. B. Calixto. 2011. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PloS One 6 (10):e26012. doi:10.1371/journal.pone.0026012.
  • Batista, D., J. Romáryo Duarte Da Luz, T. Evellyn Silva Do Nascimento, T. Felipe De Senes-Lopes, O. Araújo Galdino, S. Victor E Silva, M. Pinheiro Ferreira, M. Arrison Dos Santos Azevedo, J. Brandão-Neto, G. Araujo-Silva, et al. 2022. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. J. Toxicol. Environ. Health Part A 85 (7):276–90. doi:10.1080/15287394.2021.2002744.
  • Bernatoniene, J., and D. Kopustinskiene. 2018. The role of catechins in cellular responses to oxidative stress. Molecules 23 (4):965. doi:10.3390/molecules23040965.
  • Bhandary, S. K., V. S. Bhat, K. P. Sharmila, M. P. Bekal, and M. P. Bekal. 2012. Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J. Health Allied Sci. NU 2 (04):34–38. doi:10.1055/s-0040-1703609.
  • Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181 (4617):1199–200. doi:10.1038/1811199a0.
  • Brieger, L. 1891. Ueber die Einwirkung von Salpetersäure auf Acetonylaceton. Ber. Dtsch. Chem. Ges. 24 (1):1305–10. doi:10.1002/cber.189102401224.
  • Carabajal, M. P. A., M. I. Isla, and I. C. Zampini. 2017. Evaluation of antioxidant and antimutagenic activity of herbal teas from native plants used in traditional medicine in Argentina. South Afr. J. Bot. 110:258–65. doi:10.1016/j.sajb.2016.10.006.
  • Cha, J. W., M. J. Piao, K. C. Kim, C. W. Yao, J. Zheng, and S. M. Kim, … J. W. Hyun, Y. S. Ahn, J. W. Hyun. 2014. The polyphenol chlorogenic acid attenuates UVB-mediated oxidative stress in human HaCaT keratinocytes. Biomol. Ther. 22 (2):136. doi:10.4062/biomolther.2014.006.
  • Chen, M. X., J. M. Huo, J. Hu, Z. P. Xu, and X. Zhang. 2018. Amaryllidaceae alkaloids from Crinum latifolium with cytotoxic, antimicrobial, antioxidant, and anti-inflammatory activities. Fitoterapia 130:48–53. doi:10.1016/j.fitote.2018.08.003.
  • Choudhari, A. S., P. C. Mandave, M. Deshpande, P. Ranjekar, and O. Prakash. 2020. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol. 10:1614.
  • Cierniak, M. K. D. A. 2019. Antioxidant and genoprotective properties of extracts from edible flowers. J. Food Nutr. Res. 58:42–50.
  • Cuadrado-Silva, C. T., M. Á. Pozo-Bayón, and C. Osorio. 2016. Targeted metabolomic analysis of polyphenols with antioxidant activity in sour guava (Psidium friedrichsthalianum Nied.) fruit. Molecules 22 (1):11. doi:10.3390/molecules22010011.
  • Daenen, K., A. Andries, D. Mekahli, A. Van Schepdael, F. Jouret, and B. Bammens. 2019. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 34 (6):975–91. doi:10.1007/s00467-018-4005-4.
  • Das, R., S. Mitra, A. M. Tareq, T. B. Emran, M. J. Hossain, A. M. Alqahtani, Y. Alghazwani, K. Dhama, and J. Simal-Gandara. 2022. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. J. Ethnopharmacol. 282:114588. doi:10.1016/j.jep.2021.114588.
  • de Giffoni de Carvalho, J. T., D. da Silva Baldivia, D. F. Leite, L. C. A. de Araújo, P. P. de Toledo Espindola, K. A. Antunes, P. S. Rocha, K. de Picoli Souza, and E. L. dos Santos. 2019. Medicinal plants from Brazilian Cerrado: Antioxidant and anticancer potential and protection against chemotherapy toxicity. Oxid. Med. Cell Longev. 2019:3685264. doi:10.1155/2019/3685264.
  • deSousa, J. A., L. D. S. Prado, B. L. Alderete, F. B. M. Boaretto, M. C. Allgayer, F. M. Miguel, J. T. De Sousa, N. P. Marroni, M. L. B. Lemes, D. S. Corrêa, et al. 2019. Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile. J. Toxicol. Environ. Health Part A 82 (1):62–74. doi:10.1080/15287394.2018.1562392.
  • Dewar, J. 1877. Action of phosphorus pentoxide on phenols and on certain derivatives of phenols. J. Chem. Soc. Trans. 31:594–601.
  • Dimitrić Marković, J. M., D. Milenković, D. Amić, A. Popović-Bijelić, M. Mojović, I. A. Pašti, and Z. S. Marković. 2014. Energy requirements of the reactions of kaempferol and selected radical species in different media: Towards the prediction of the possible radical scavenging mechanisms. Structural Chem. 25 (6):1795–804. doi:10.1007/s11224-014-0453-z.
  • Fernandes, A., J. Hollanda Véras, L. S. Silva, S. C. Puga, E. F. Luiz Cardoso Bailão, M. G. De Oliveira, C. G. Cardoso, C. C. Carneiro, S. D. Costa Santos, and L. Chen-Chen. 2022. Pedunculagin isolated from Plinia cauliflora seeds exhibits genotoxic, antigenotoxic and cytotoxic effects in bacteria and human lymphocytes. J. Toxicol. Environ. Health Part A 85 (9):353–63. doi:10.1080/15287394.2021.2009947.
  • Forman, H. J., and H. Zhang. 2021. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20 (9):689–709. doi:10.1038/s41573-021-00233-1.
  • Forrester, S. J., D. S. Kikuchi, M. S. Hernandes, Q. Xu, and K. K. Griendling. 2018. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122 (6):877–902. doi:10.1161/CIRCRESAHA.117.311401.
  • Fujiki, H., E. Sueoka, T. Watanabe, and M. Suganuma. 2015. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. J. Cancer Res. Clin. Oncol. 141 (9):1511–22. doi:10.1007/s00432-014-1899-5.
  • Gan, J., Y. Feng, Z. He, X. Li, and H. Zhang. 2017. Correlations between antioxidant activity and alkaloids and phenols of Maca (Lepidium meyenii). J. Food Qual. 2017:3185945. doi:10.1155/2017/3185945.
  • Garrat, D. C. 1964. The quantitative analysis of drugs, vol. 3, pp. 456–58. Japan: Chapman and Hall Ltd.
  • Geraldi, A., A. P. Wardana, N. S. Aminah, A. N. Kristanti, A. Y. Sadila, N. H. Wijaya, M. R. A. Wijaya, N. I. D. Diningrum, V. R. Hajar, and Y. S. W. Manuhara. 2022. Tropical medicinal plant extracts from Indonesia as antifungal agents against Candida albicans. Front. Biosci. 27 (9):274. doi:10.31083/j.fbl2709274.
  • Ghio, A. J., M. S. Carraway, and M. C. Madden. 2012. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J. Toxicol. Environ. Health B 15 (1):1–21. doi:10.1080/10937404.2012.632359.
  • Giusti, F., G. Caprioli, M. Ricciutelli, S. Vittori, and G. Sagratini. 2017. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 221:689–97. doi:10.1016/j.foodchem.2016.11.118.
  • Gori, A., F. Ferrini, M. C. Marzano, M. Tattini, M. Centritto, and M. C. Baratto, … C. Brunetti, C. Brunetti. 2016. Characterisation and antioxidant activity of crude extract and polyphenolic rich fractions from C. incanus leaves. Int. J. Mol. Sci. 17 (8):1344. doi:10.3390/ijms17081344.
  • Hamad, İ., Ö. Erol-Dayi, M. Pekmez, E. Önay-Uçar, and N. Arda. 2010. Antioxidant and cytotoxic activities of Aphanes arvensis extracts. Plant Foods Human Nutr. 65 (1):44–49. doi:10.1007/s11130-009-0151-y.
  • Handa, S. S. 2008. An overview of extraction techniques for medicinal and aromatic plants. Extraction Technol. Med. Aromatic Plants 1:21–40.
  • Haq, I. U., M. Imran, M. Nadeem, T. Tufail, T. A. Gondal, and M. S. Mubarak. 2021. Piperine: A review of its biological effects. Phytother. Res. 35 (2):680–700. doi:10.1002/ptr.6855.
  • Harborne, J. B. 1984. Methods of plant analysis . In Phytochemical methods, pp. 1–36. Dordrecht: Springer.
  • Haza, A. I., and P. Morales. 2011. Effects of (+)catechin and (−)epicatechin on heterocyclic amines-induced oxidative DNA damage. J. Appl. Toxicol. 31 (1):53–62. doi:10.1002/jat.1559.
  • Hu, Q., and Y. Luo. 2016. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydr. Polym. 151:624–39. doi:10.1016/j.carbpol.2016.05.109.
  • Ifeanyi, O. E. 2018. A review on free radicals and antioxidants. Int. J. Curr. Res. Med. Sci 4:123–33.
  • Ionescu-Tucker, A., and C. W. Cotman. 2021. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 107:86–95. doi:10.1016/j.neurobiolaging.2021.07.014.
  • Jakubczyk, K., K. Dec, J. Kałduńska, D. Kawczuga, J. Kochman, and K. Janda. 2020. Reactive oxygen species-sources, functions, oxidative damage. Pol. Merkurz Lekarski 48:124–27.
  • Jelic, M. D., A. D. Mandic, S. M. Maricic, and B. U. Srdjenovic. 2021. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 17 (1):22–28. doi:10.4103/jcrt.JCRT_862_16.
  • Joshi, N., S. Bhatt, S. Dhyani, and J. Nain. 2013. Phytochemical screening of secondary metabolites of Argemone mexicana linn. flowers. Int. J. Curr. Pharm. Res. 5:144–47.
  • Kaisoon, O., S. Siriamornpun, N. Weerapreeyakul, and N. Meeso. 2011. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Function Foods 3 (2):88–99. doi:10.1016/j.jff.2011.03.002.
  • Kalemba-Drożdż, M., I. Kwiecień, A. Szewczyk, A. Cierniak, and A. Grzywacz-Kisielewska. 2020. Fermented vinegars from apple peels, raspberries, rosehips, lavender, mint, and rose petals: The composition, antioxidant power, and genoprotective abilities in comparison to acetic macerates, decoctions, and tinctures. Antioxidants 9 (11):1121. doi:10.3390/antiox9111121.
  • Kamatham, S., N. Kumar, and P. Gudipalli. 2015. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicol. Rep. 2:520–29. doi:10.1016/j.toxrep.2015.03.001.
  • Kaur, S., M. Kumar, P. Kaur, V. Kaur, and S. Kaur. 2016. Modulatory effects of Cassia fistula fruits against free radicals and genotoxicity of mutagens. Food Chem. Toxicol. 98:220–31. doi:10.1016/j.fct.2016.10.027.
  • Kim, E. J., J. Y. Choi, M. R. Yu, M. Y. Kim, S. H. Lee, and B. H. Lee. 2012. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Technol. 44 (3):337–42. doi:10.9721/KJFST.2012.44.3.337.
  • Kim, D. O., S. W. Jeong, and C. Y. Lee. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81 (3):321–26. doi:10.1016/S0308-8146(02)00423-5.
  • Kim, T. Y., E. Leem, J. M. Lee, and S. R. Kim. 2020. Control of reactive oxygen species for the prevention of Parkinson’s disease: The possible application of flavonoids. Antioxidants 9 (7):583. doi:10.3390/antiox9070583.
  • Kirtikar, K. R. B. B., and B. D. Basu. 1935. Indian medicinal plants. Indian Medicinal Plants.
  • Klaunig, J. E. 2018. Oxidative stress and cancer. Curr. Pharm. Des. 24 (40):4771–78. doi:10.2174/1381612825666190215121712.
  • Knaus, U. G. 2021. Oxidants in physiological processes. In Reactive oxygen species : Network pharmacology and therapeutic applications, ed. H. H. H. W. Schmidt, P. Ghezzi, and A. Cuadrado, pp. 27–47. Cham: Springer International Publishing.pp.
  • Kokate, C. K. 1994. Practical pharmacognosy. 4th ed., 179–81. New Delhi: VallabhPrakan.
  • Kola, P., K. Metowogo, S. N. Manjula, G. Katawa, H. Elkhenany, and K. M. Mruthunjaya, K. A. Aklikokou, and K. A. Aklikokou. 2022. Ethnopharmacological evaluation of antioxidant, anti-angiogenic, and anti-inflammatory activity of some traditional medicinal plants used for treatment of cancer in Togo/Africa. J. Ethnopharmacol. 283:114673. doi:10.1016/j.jep.2021.114673.
  • Koziol, M. J. 1990. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 54 (2):211–19. doi:10.1002/jsfa.2740540206.
  • Kramberger, K., Z. Jenko Pražnikar, A. Baruca Arbeiter, A. Petelin, D. Bandelj, and S. Kenig. 2021. A comparative study of the antioxidative effects of Helichrysum italicum and Helichrysum arenarium infusions. Antioxidants 10 (3):380. doi:10.3390/antiox10030380.
  • Kumar, A. 2020. Phytochemistry, pharmacological activities and uses of traditional medicinal plant Kaempferia galanga L. - an overview. J. Ethnopharmacol. 253:112667. doi:10.1016/j.jep.2020.112667.
  • Kumaravel, T. S., and A. N. Jha. 2006. Reliable comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res/Genet. Toxicol. Environ. Mutagen 605 (1–2):7–16. doi:10.1016/j.mrgentox.2006.03.002.
  • Kumar, S., P. K. Jena, S. Sabnam, M. Kumari, and P. K. Tripathy. 2012. Study of plants used against the skin diseases with special reference to Cassia fistula L. among the king (Dongaria kandha) of Niyamgiri: A primitive tribe of Odisha, India. Int. J. Drug Dev. Res. 4:256–64.
  • Kuntzel, A. 1955. Gerbereichemisches Taschenbuch. Dresden & Leipzig: Steinkopff.
  • Kuriakose, G. C., B. P. Arathi, H. K. Rs, A. K. Th, K. Jayabhaskaran, and C. Ananthaswamy. 2018. Extract of Penicillium sclerotiorum an endophytic fungus isolated from Cassia fistula L. induces cell cycle arrest leading to apoptosis through mitochondrial membrane depolarization in human cervical cancer cells. Biomed. Pharmacother. 105:1062–71. doi:10.1016/j.biopha.2018.06.094.
  • Kushwah, A. S., R. Mittal, M. Kumar, G. Kaur, P. Goel, R. K. Sharma, A. Kabra, L. M. Nainwal, and M. Zia-Ul-Haq. 2022. Cardioprotective activity of Cassia fistula L. bark extract in isoproterenol-induced myocardial infarction rat model. Evid Based Complement Alternat. Med. 2022:6874281. doi:10.1155/2022/6874281.
  • Lee, K. J., and H. G. Jeong. 2007. Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol. Lett. 173 (2):80–87. doi:10.1016/j.toxlet.2007.06.008.
  • Liao, W., L. Chen, X. Ma, R. Jiao, X. Li, and Y. Wang. 2016. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem. 114:24–32. doi:10.1016/j.ejmech.2016.02.045.
  • Lieberman, D., and H. Burchard. 1929. Über eine Reaktion der Triterpene. Chem. Ber. 62:2086–94.
  • Liguori, I., G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, P. Abete, G. Testa, F. Cacciatore, D. Bonaduce, et al. 2018. Oxidative stress, aging, and diseases. 13:757. doi:10.2147/CIA.S158513.
  • Li, Y., Q. Lin, X. Lu, and W. Li. 2021. Post-diagnosis use of antioxidant vitamin supplements and breast cancer prognosis: A systematic review and meta-analysis. Clin. Breast Cancer 21 (6):477–85. doi:10.1016/j.clbc.2021.09.001.
  • Li, A. N., S. Li, Y. J. Zhang, X. R. Xu, Y. M. Chen, and H. B. Li. 2014. Resources and biological activities of natural polyphenols. Nutrients 6 (12):6020–47. doi:10.3390/nu6126020.
  • Lin, B., J. Xu, D. G. Feng, F. Wang, J. X. Wang, and H. Zhao. 2018. DUSP14 knockout accelerates cardiac ischemia reperfusion (IR) injury through activating NF-κB and MAPKs signaling pathways modulated by ROS generation. Biochem. Biophy Res. Commun. 501 (1):24–32. doi:10.1016/j.bbrc.2018.04.101.
  • Mahdy, K., O. Shaker, H. Wafay, Y. Nassar, H. Hassan, and A. Hussein. 2012. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eur. Rev. Med. Pharmacol. Sci. 16 Suppl 3:31–42.
  • Majolo, F., S. Bitencourt, B. Wissmann Monteiro, G. Viegas Haute, C. Alves, J. Silva, S. Pinteus, R. C. V. Santos, H. F. V. Torquato, E. J. Paredes-Gamero, et al. 2020. Antimicrobial and antileukemic effects: In vitro activity of Calyptranthes grandifolia aqueous leaf extract. J. Toxicol. Environ. Health 83 (8):289–301. doi:10.1080/15287394.2020.1753606.
  • Makhafola, T. J., E. E. Elgorashi, L. J. McGaw, L. Verschaeve, and J. N. Eloff. 2016. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complement Altern. Med. 16 (1):1–13. doi:10.1186/s12906-016-1437-x.
  • Miao, M., and L. Xiang. 2020. Pharmacological action and potential targets of chlorogenic acid. Adv. Pharmacol. 87:71–88.
  • Mickisch, G., S. Fajta, G. Keilhauer, E. Schlick, R. Tschada, and P. Alken. 1990. Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol. Res. 18 (2):131–36. doi:10.1007/BF00302474.
  • Miliauskas, G., P. R. Venskutonis, and T. A. Van Beek. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85 (2):231–37. doi:10.1016/j.foodchem.2003.05.007.
  • Miller, M. R. 2020. Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med. 151:69–87. doi:10.1016/j.freeradbiomed.2020.01.004.
  • Molisch, H. 1909. Eine neue Methode zur Untersuchung der Kohlenhydrate. Chemiker-Zeitung 33:612–13.
  • Musial, C., A. Kuban-Jankowska, and M. Gorska-Ponikowska. 2020. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 21 (5):1744. doi:10.3390/ijms21051744.
  • Nishikimi, M., N. A. Rao, and K. Yagi. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophysl. Res. Commun. 46 (2):849–54. doi:10.1016/S0006-291X(72)80218-3.
  • Olszowy, M. 2019. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 144:135–43. doi:10.1016/j.plaphy.2019.09.039.
  • Panda, S. K., L. P. Padhi, and G. Mohanty. 2011. Antibacterial activities and phytochemical analysis of Cassia fistula (Linn.) leaf. J. Adv. Pharmaceut. Technol. Res. 2 (1):62. doi:10.4103/2231-4040.79814.
  • Pattnaik, A., S. Pati, and S. K. Samal. 2022. Chitosan-polyphenol conjugates for human health. Life 12 (11):1768. doi:10.3390/life12111768.
  • Pawar, A. V., and S. G. Killedar. 2017. Uses of Cassia fistula Linn as a medicinal plant. Int. Jr. Adv. Res. Dev. 2:2017.
  • Percário, S., A. da Silva Barbosa, E. L. P. Varela, A. R. Q. Gomes, M. E. S. Ferreira, T. de Nazaré Araújo Moreira, M. F. Dolabela, and P. Morales. 2020. Oxidative stress in Parkinson’s disease: Potential benefits of antioxidant supplementation. Oxid. Med. Cell Longev. 2020:2360872. doi:10.1155/2020/2360872.
  • Pisoschi, A. M., and A. Pop. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 97:55–74. doi:10.1016/j.ejmech.2015.04.040.
  • Poljsak, B., D. Šuput, and I. Milisav. 2013. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell Longev. 2013:956792. doi:10.1155/2013/956792.
  • Prasad, S., S. C. Gupta, and A. K. Tyagi. 2017. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. doi:10.1016/j.canlet.2016.03.042.
  • Qasim, M., Z. Abideen, M. Y. Adnan, S. Gulzar, B. Gul, M. Rasheed, and M. A. Khan. 2017. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South Afr. J. Bot. 110:240–50. doi:10.1016/j.sajb.2016.10.005.
  • Qiu, J., X. Wang, and C. Song. 2016. Neuroprotective and antioxidant lanostanoid triterpenes from the fruiting bodies of Ganoderma atrum. Fitoterapia 109:75–79.
  • Raju Ilavarasan, M. M., S. Venkataraman, and S. Venkataraman. 2005. Anti-inflammatory and antioxidant activities of Cassia fistula Linn bark extracts. Afr. J. Tradition Complement Altern. Med. 2 (1):70–85. doi:10.4314/ajtcam.v2i1.31105.
  • Reddy, M. N., M. Adnan, M. M. Alreshidi, M. Saeed, and M. Patel. 2020. Evaluation of anticancer, antibacterial and antioxidant properties of a medicinally treasured fern Tectaria coadunata with its phytoconstituents analysis by HR-LCMS. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem.-Anti.-Cancer Agents) 20 (15):1845–56. doi:10.2174/1871520620666200318101938.
  • Rice-Evans, C., N. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2 (4):152–59. doi:10.1016/S1360-1385(97)01018-2.
  • Salkowski, E. 1872. Kleinere Mittheilungen physiologisch-chemischen Inhalts (II). Pflüger, Archiv für die Gesammte Physiologie des Menschen und der Thiere 6 (1):207–22. doi:10.1007/BF01612251.
  • Sharma, D. K. 2017. Enumerations on phytochemical, pharmacological and ethnobotanical properties of Cassia fistula Linn: Yellow shower. J. Phytopharmacol. 6 (5):300–06. doi:10.31254/phyto.2017.6509.
  • Sharma, A., A. Kumar, and V. Jaitak. 2021. Pharmacological and chemical potential of Cassia fistula L-a critical review. J. Herbal Med. 26:100407. doi:10.1016/j.hermed.2020.100407.
  • Shen, S., D. Callaghan, C. Juzwik, H. Xiong, P. Huang, and W. Zhang. 2010. ABCG2 reduces ROS‐mediated toxicity and inflammation: A potential role in Alzheimer’s disease. J. Neurochem. 114 (6):1590–604. doi:10.1111/j.1471-4159.2010.06887.x.
  • Shen, N., T. Wang, Q. Gan, S. Liu, L. Wang, and B. Jin. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 383:132531. doi:10.1016/j.foodchem.2022.132531.
  • Shinoda, Y., T. Yamamoto, and K. Koshimizu. 1955. Tests for tannins and related compounds. IV. A new color reaction of flavanones and flavones. J. Chem. Soc. Japan 76:463–69.
  • Shkirkova, K., K. Lamorie-Foote, M. Connor, A. Patel, G. Barisano, H. Baertsch, Q. Liu, T. E. Morgan, C. Sioutas, and W. J. Mack. 2020. Effects of ambient particulate matter on vascular tissue: A review. J. Toxicol. Environ. Health B 23 (7):319–50. doi:10.1080/10937404.2020.1822971.
  • Shruthi, S., and B. K. Shenoy. 2018. Genoprotective effects of gallic acid against cisplatin induced genotoxicity in bone marrow cells of mice. Toxicol Res. 7 (5):951–58. doi:10.1039/C8TX00058A.
  • Shruthi, S., and K. B. Shenoy. 2021. Gallic acid: A promising genoprotective and hepatoprotective bioactive compound against cyclophosphamide induced toxicity in mice. Environ. Toxicol. 36 (1):123–31. doi:10.1002/tox.23018.
  • Silva, J. D. N., N. B. N. Monção, R. R. S. de Farias, A. M. D G L Citó, M. H. Chaves, M. R. S. D Araújo, D. J. B. Lima, C. Pessoa, A. D Lima, E. C. D C Araújo, et al. 2020. Toxicological, chemopreventive, and cytotoxic potentialities of rare vegetal species and supporting findings for the Brazilian Unified Health System (SUS). J. Toxicol. Environ. Health Part A 83 (13–14):525–45. doi:10.1080/15287394.2020.1780658.
  • Singh, N. P., M. T. McCoy, R. R. Tice, and E. L. Schneider. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175 (1):184–91. doi:10.1016/0014-4827(88)90265-0.
  • Sousa, H. G., V. T. Uchoa, S. M. G. Cavalcanti, P. M. de Almeida, M. H. Chaves, J. D. S. Lima Neto, P. H. M. Nunes, J. S. da Costa Júnior, M. Rai, I. S. Do Carmo, et al. 2021. Phytochemical screening, phenolic and flavonoid contents, antioxidant and cytogenotoxicity activities of Combretum leprosum Mart.(Combretaceae). J. Toxicol. Environ. Health Part A 84 (10):399–417. doi:10.1080/15287394.2021.1875345.
  • Sreelatha, S., and P. R. Padma. 2009. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Human Nutr. 64 (4):303–11. doi:10.1007/s11130-009-0141-0.
  • Stagos, D. 2019. Antioxidant activity of polyphenolic plant extracts. Antioxidants 9 (1):19. doi:10.3390/antiox9010019.
  • Su, H., C. Wan, A. Song, Y. Qiu, W. Xiong, and C. Zhang. 2019. Oxidative stress and renal fibrosis: Mechanisms and therapies. Adv. Exp. Med. Biol. 1165: 585–604.
  • Swargiary, A., A. K. Verma, S. Singh, M. K. Roy, and M. Daimari. 2021. Antioxidant and antiproliferative activity of selected medicinal plants of lower Assam, India: An in vitro and in silico study. Anticancer. Agents Med. Chem. 21 (2):267–77. doi:10.2174/18715206MTA4rMjUly.
  • Tang, E. L., J. Rajarajeswaran, S. Y. Fung, and M. S. Kanthimathi. 2013. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Alter. Med. 13 (1):1–13. doi:10.1186/1472-6882-13-347.
  • Tan, B. L., M. E. Norhaizan, and W. P. Liew. 2018. Nutrients and oxidative stress: Friend or foe? Oxid. Med. Cell Longev. 2018:9719584. doi:10.1155/2018/9719584.
  • Vaishnava, M. M., A. K. Tripathi, and K. R. Gupta. 1993. Constituents of Cassia fistula roots. Fitoterapia 64:93–94.
  • Villaño, D., M. S. Fernández-Pachón, M. L. Moyá, A. M. Troncoso, and M. C. García-Parrilla. 2007. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71 (1):230–35. doi:10.1016/j.talanta.2006.03.050.
  • Wager, H. 1893. On the detection of alkaloids: A study of the colour reactions. Chem. Soc. Trans. 63:905–21.
  • Wang, J., B. Luo, X. Li, W. Lu, J. Yang, and Y. Hu, S. Wen, and S. Wen. 2017. Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells. Cell Death Disease 8 (6):e2887. doi:10.1038/cddis.2017.272.
  • Yang, K., X. Deng, S. Jian, M. Zhang, C. Wen, Z. Xin, L. Zhang, A. Tong, S. Ye, P. Liao, et al. 2022. Gallic acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome–metabolomics asnalysis. Front Immunol. 12:813890. doi:10.3389/fimmu.2021.813890.
  • You, J., Y. Luo, and J. Wu. 2014. Conjugation of ovotransferrin with catechin shows improved antioxidant activity. J. Agric. Food Chem. 62 (12):2581–87. doi:10.1021/jf405635q.
  • Yu, M., I. Gouvinhas, J. Rocha, and A. I. R. N. A. Barros. 2021. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 11 (1):10041. doi:10.1038/s41598-021-89437-4.
  • Yu, L., S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian. 2002. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 50 (6):1619–24. doi:10.1021/jf010964p.
  • Zhang, P., T. Li, X. Wu, E. C. Nice, C. Huang, and Y. Zhang. 2020. Oxidative stress and diabetes: Antioxidative strategies. Front Med. 14 (5):583–600. doi:10.1007/s11684-019-0729-1.
  • Zheng, S. Y., Y. Li, D. Jiang, J. Zhao, and J. F. Ge. 2012. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep. 5:822–26. doi:10.3892/mmr.2011.726.
  • Zhou, Y., J. Zheng, Y. Li, D. -P. Xu, S. Li, Y. -M. Chen, and H. -B. Li. 2016. Natural polyphenols for prevention and treatment of cancer. Nutrients 8 (8):515. doi:10.3390/nu8080515.
  • Zhou, M., K. Zhou, X. M. Gao, Z. Y. Jiang, J. J. Lv, and Z. H. Liu, Q. F. Hu, M. -M. Miao, C. -T. Che, and Q. -F. Hu. 2015. Fistulains a and B, new bischromones from the bark of Cassia fistula, and their activities. Organ. Lett. 17 (11):2638–41. doi:10.1021/acs.orglett.5b01007.
  • Zhu, W., and Z. Zhang. 2014. Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. Int. J. Biol. Macromol. 70:150–55. doi:10.1016/j.ijbiomac.2014.06.047.
  • Żurek, N., A. Pawłowska, K. Pycia, D. Grabek-Lejko, and I. T. Kapusta. 2022. Phenolic profile and antioxidant, antibacterial, and antiproliferative activity of Juglans regia L. male flowers. Molecules 27 (9):2762. doi:10.3390/molecules27092762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.