217
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Chloramine T on zebrafish embryos malformations associated with cardiotoxicity and neurotoxicity

, , , , , & show all

References

  • Agoba, E. E., F. Adu, C. Agyare, and V. E. Boamah. 2017. Antibiotic use and practices in selected fish farms in the ashanti region of ghana. J. Infect. Dis. Treat 3:9. doi:10.21767/2472-1093.100036.
  • Arnnok, P., R. R. Singh, R. Burakham, A. Pérez-Fuentetaja, and D. S. Aga. 2017. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River. Environmental Science & Technology 51 (18):10652–62. doi:https://doi.org/10.1021/acs.est.7b02912.
  • Ayala, A., M. F. Muñoz, and S. Argüelles. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:1–31. doi:10.1155/2014/360438.
  • Bahadır, T., H. Çelebi, İ. Şimşek, and Ş. Tulun. 2019. Antibiotic applications in fish farms and environmental problems. Turk J. Eng 2014:360438. doi:10.31127/tuje.452921.
  • Behra, M., X. Cousin, C. Bertrand, J. -L. Vonesch, D. Biellmann, A. Chatonnet, and U. Strähle. 2002. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat. Neurosci. 5:111–18. doi:10.1038/nn788.
  • Bentes, C. S. P., M. Gomes da Cruz, G. T. Jerônimo, F. C. Coimbra, and L. U. Gonçalves. 2022. Chloramine-T application for Trichodina sp. in Arapaima gigas juveniles: Acute toxicity, histopathology, efficacy, and physiological effects. Vet. Parasitol. 303:109667. doi:10.1016/j.vetpar.2022.109667.
  • Bertrand, C., A. Chatonnet, C. Takke, Y. Yan, J. Postlethwait, J. -P. Toutant, and X. Cousin. 2001. Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7. J. Biol. Chem. 276 (1):464–74. doi:10.1074/jbc.M006308200.
  • Bhagat, J., L. Zang, N. Nishimura, and Y. Shimada. 2020. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Sci. Total Environ. 728:138707. doi:10.1016/j.scitotenv.2020.138707.
  • Boran, H., and I. Altinok. 2014. Impacts of chloramine-T treatment on antioxidant enzyme activities and genotoxicity in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 37 (5):431–41. doi:10.1111/jfd.12122.
  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2):248–54. doi:10.1006/abio.1976.9999.
  • Braunbeck, T., B. Kais, E. Lammer, J. Otte, K. Schneider, D. Stengel, and R. Strecker. 2015. The fish embryo test (FET): Origin, applications, and future. Environ. Sci. Pollut. Res 22 (21):16247–61. doi:10.1007/s11356-014-3814-7.
  • Chowdhury, S., and S. K. Saikia. 2022. Use of zebrafish as a model organism to study oxidative stress: A review. Zebrafish 19:165–76. doi:10.1089/zeb.2021.0083.
  • Crosby, E. B., J. M. Bailey, A. N. Oliveri, and E. D. Levin. 2015. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol Teratol 49:81–90. doi:10.1016/j.ntt.2015.04.006.
  • Cross, M. J., B. R. Berridge, P. J. M. Clements, L. Cove-Smith, T. L. Force, P. Hoffmann, M. Holbrook, A. R. Lyon, H. R. Mellor, A. A. Norris, et al. 2015. Physiological, pharmacological and toxicological considerations of drug-induced structural cardiac injury. Br. J. Pharmacol. 172 (4):957–74. doi:10.1111/bph.12979.
  • de Farias, N. O., R. Oliveira, D. Sousa-Moura, R. C. S. de Oliveira, M. A. C. Rodrigues, T. S. Andrade, I. Domingues, N. S. Camargo, L. A. Muehlmann, and C. K. Grisolia. 2019. Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol 215:1–8. doi:10.1016/j.cbpc.2018.08.009.
  • de Oliveira, R. C. S., R. Oliveira, M. A. C. Rodrigues, N. O. de Farias, D. Sousa-Moura, N. A. Nunes, T. S. Andrade, and C. K. Grisolia. 2020. Lethal and sub-lethal effects of nitrofurantoin on zebrafish early-life stages. Water Air Soil Pollut 231 (2):54. doi:10.1007/s11270-020-4414-4.
  • Dingova, D., J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska. 2014. Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay. Anal. Biochem. 462:67–75. doi:10.1016/j.ab.2014.05.031.
  • Ellman, G. L., K. D. Courtney, V. Andres, and R. M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7 (2):88–95. doi:10.1016/0006-2952(61)90145-9.
  • FDA. 2014. HALAMID ® Aqua Chloramine-T, powder for immersion, freshwater-reared salmonids, walleye and freshwater- reared warmwater finfish. New Anim. Drug Appl. 56.
  • Figueroa, D., A. Signore, O. Araneda, H. R. Contreras, M. Concha, and C. García. 2020. Toxicity and differential oxidative stress effects on zebrafish larvae following exposure to toxins from the okadaic acid group. J. Toxicol. Environ. Health Part A 83 (15–16):573–88. doi:10.1080/15287394.2020.1793046.
  • Gould, S. L., M. J. Winter, W. H. J. Norton, and C. R. Tyler. 2021. The potential for adverse effects in fish exposed to antidepressants in the aquatic environment. Environ Sci Technol 55 (24):16299–312. doi:10.1021/acs.est.1c04724.
  • Guo, X., S. Zhang, X. Liu, S. Lu, Q. Wu, and P. Xie. 2021. Evaluation of the acute toxicity and neurodevelopmental inhibition of perfluorohexanoic acid (PFHxA) in zebrafish embryos. Ecotoxicology and Environmental Safety 225:112733. doi:10.1016/j.ecoenv.2021.112733.
  • Hamre, K., M. Yúfera, I. Rønnestad, C. Boglione, L. E. C. Conceição, and M. Izquierdo. 2013. Fish larval nutrition and feed formulation: Knowledge gaps and bottlenecks for advances in larval rearing. Rev. Aquac 5:S26–58. doi:10.1111/j.1753-5131.2012.01086.x.
  • Haneke, K. 2002. Chloramine-T [127-65-1] and metabolite p-toluenesulfonamide [70-55-3]: Review of toxicological literature. https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/chloraminet_508.pdf
  • Harper, C., and C. Lawrence. 2016. The Laboratory Zebrafish, the Laboratory Zebrafish. The Laboratory Zebrafish. doi:10.1201/b13588.
  • Hashiguchi, Y., M. R. Zakaria, M. Toshinari, M. Z. Mohd Yusoff, Y. Shirai, and M. A. Hassan. 2021. Ecotoxicological assessment of palm oil mill effluent final discharge by zebrafish (Danio rerio) embryonic assay. Environ. Pollut. 277:116780. doi:10.1016/j.envpol.2021.116780.
  • Hu, H., M. Su, H. Ba, G. Chen, J. Luo, F. Liu, X. Liao, Z. Cao, J. Zeng, H. Lu, et al. 2022. ZIF-8 nanoparticles induce neurobehavioral disorders through the regulation of ROS-mediated oxidative stress in zebrafish embryos. Chemosphere 305:135453. doi:10.1016/j.chemosphere.2022.135453.
  • Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn 203:253–310. doi:10.1002/aja.1002030302.
  • Kumagai, A., and A. Nawata. 2011. Concentration of Flavobacterium psychrophilum in the ovarian fluid and milt of cultured salmonids. Fish Pathol. 46 (4):116–19. doi:10.3147/jsfp.46.116.
  • Lahnsteiner, F. 2021. Effect of disinfection of non-hardened Salmo trutta eggs with Chloramine T®, Wofasteril®, and hydrogen peroxide on embryo and larvae viability, microorganism load, lipid peroxidation, and protein carbonylation. Aquat. Int 29 (5):1949–62. doi:10.1007/s10499-021-00727-0.
  • Lammer, E., G. J. Carr, K. Wendler, J. M. Rawlings, S. E. Belanger, and T. Braunbeck. 2009. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp. Biochem. Physiol. Part C Toxicol. Pharmacol 149 (2):196–209. doi:10.1016/j.cbpc.2008.11.006.
  • Lanzarin, G. A. B., C. A. S. Venâncio, L. M. Félix, and S. M. Monteiro. 2022. Evaluation of the developmental effects of a glyphosate-based herbicide complexed with copper, zinc, and manganese metals in zebrafish. Chemosphere 308:136430. doi:10.1016/j.chemosphere.2022.136430.
  • Layer, P. G. 1990. Cholinesterases preceding major tracts in vertebrate neurogenesis. BioEssays 12:415–20. doi:10.1002/bies.950120904.
  • Le Du-Carrée, J., F. Saliou, J. Cachot, T. Morin, and M. Danion. 2021. Developmental effect of parental or direct chronic exposure to environmental concentration of glyphosate on the larvae of rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 237:105894. doi:10.1016/j.aquatox.2021.105894.
  • Lu, K., R. Qiao, H. An, and Y. Zhang. 2018. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202:514–20. doi:10.1016/j.chemosphere.2018.03.145.
  • McDonnell, G., and A. D. Russell. 1999. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 12 (1):147–79. doi:10.1128/CMR.12.1.147.
  • Minski, V. T., C. Garbinato, N. Thiel, and A. M. Siebel. 2021. Erythromycin in the aquatic environment: Deleterious effects on the initial development of zebrafish. J. Toxicol. Environ. Health Part A 84 (2):56–66. doi:10.1080/15287394.2020.1834477.
  • Mugoni, V., A. Camporeale, and M. M. Santoro. 2014. Analysis of oxidative stress in zebrafish embryos. J Vis Exp (89). doi:10.3791/51328.
  • Nadal, A. L., W. Ikeda-Ohtsubo, D. Sipkema, D. Peggs, C. McGurk, M. Forlenza, G. F. Wiegertjes, and S. Brugman. 2020. Feed, microbiota, and gut immunity: Using the zebrafish model to understand fish health. Front. Immunol 11:114. doi:10.3389/fimmu.2020.00114.
  • Naeem, S., M. Ashraf, M. E. Babar, S. Zahoor, and S. Ali. 2021. The effects of some heavy metals on some fish species. Environ. Sci. Pollut. Res 28 (20):25566–78. doi:10.1007/s11356-021-12385-z.
  • OECD, 2013. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD. 10.1787/9789264203709-em
  • OECD. 2019. Test No. 203: Fish, Acute Toxicity Test, OECD guidelines for the testing of chemicals, Section 2. OECD. doi:10.1787/9789264069961-en.
  • Paduraru, E., D. Iacob, V. Rarinca, G. Plavan, D. Ureche, R. Jijie, and M. Nicoara. 2023. Zebrafish as a potential model for neurodegenerative diseases: A focus on toxic metals implications. Int J Mol Sci 24 (4):3428. doi:10.3390/ijms24043428.
  • Powell, M. D., D. J. Speare, and N. MacNair. 1994. Effects of intermittent chloramine-T exposure on growth, serum biochemistry, and fin condition of juvenile rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci 51 (8):1728–36. doi:10.1139/f94-174.
  • Quesada-García, A., A. Valdehita, F. Torrent, M. Villarroel, M. D. Hernando, and J. M. Navas. 2013. Use of fish farms to assess river contamination: Combining biomarker responses, active biomonitoring, and chemical analysis. Aquat. Toxicol. 140–141:439–48. doi:10.1016/j.aquatox.2013.07.007.
  • Quezada-Rodriguez, P. R., R. S. Taylor, F. Samsing, M. Rigby, A. T. Wood, B. F. Nowak, and J. W. Wynne. 2022. Effect of a prophylactic treatment with chloramine-T on gill histology and microbiome of Atlantic salmon (Salmo salar) under commercial conditions. Aquaculture 546:737319. doi:10.1016/j.aquaculture.2021.737319.
  • Rodríguez-García, A., R. García-Vicente, M. L. Morales, A. Ortiz-Ruiz, J. Martínez-López, and M. Linares. 2020. Protein carbonylation and lipid peroxidation in hematological malignancies. Antioxidants 9:1212. doi:10.3390/antiox9121212.
  • Sanchez, J. G., D. J. Speare, N. Macnair, and G. Johnson. 1996. Effects of a prophylactic chloramine-T treatment on growth performance and condition indices of rainbow trout. J. Aquat. Anim. Health 8 (4):278–84. doi:10.1577/1548-8667(1996)008<0278:EOAPCT>2.3.CO;2.
  • Schmidt, L. J., M. P. Gaikowski, W. H. Gingerich, G. R. Stehly, W. J. Larson, V. K. Dawson, and T. M. Schreier. 2007. Environmental assessment of the effects of chloramine-T use in and discharge by freshwater aquaculture. U.S. Food Drug Adm. Cent. Vet. Med. 1–136.
  • Sirri, R., A. Zaccaroni, A. Di Biase, O. Mordenti, L. Stancampiano, G. Sarli, and L. Mandrioli. 2013. Effects of two water disinfectants (chloramine T and peracetic acid) on the epidermis and gills of Garra rufa used in human ichthyotherapy. Pol J Vet Sci 16 (3):453–61. doi:10.2478/pjvs-2013-0063.
  • Slinger, J., M. B. Adams, C. N. Stratford, M. Rigby, and J. W. Wynne. 2021. The effect of antimicrobial treatment upon the gill bacteriome of Atlantic salmon (Salmo salar L.) and progression of amoebic gill disease (AGD) in vivo. Microorganisms 9:987. doi:10.3390/microorganisms9050987.
  • Soleimani, T. A. R., and A. K. I. S. Sattari. 2017. Safety evaluation of chloramine –T on ornamental zebra fish (Danio rerio) using LC50 calculation and organ pathology. Iran. J. Fish. Sci 16:26–37.
  • Stara, A., M. Sergejevova, P. Kozak, J. Masojidek, J. Velisek, and A. Kouba. 2014. Resistance of common carp (Cyprinus carpio L.) to oxidative stress after chloramine-T treatment is increased by microalgae carotenoid-rich diet. Neuroendocrinol. Lett 35:71–80.
  • Teixidó, E., E. Piqué, J. Gómez-Catalán, and J. M. Llobet. 2013. Assessment of developmental delay in the zebrafish embryo teratogenicity assay. Toxicol in Vitro 27 (1):469–78. doi:10.1016/j.tiv.2012.07.010.
  • Tkachenko, H., and J. Grudniewska. 2016. Evaluation of oxidative stress markers in the heart and liver of rainbow trout (Oncorhynchus mykiss walbaum) exposed to the formalin. Fish Physiol. Biochem. 42 (6):1819–32. doi:10.1007/s10695-016-0260-0.
  • Victoria, S., M. Hein, E. Harrahy, and T. C. King-Heiden. 2022. Potency matters: Impacts of embryonic exposure to nAchr agonists thiamethoxam and nicotine on hatching success, growth, and neurobehavior in larval zebrafish. J. Toxicol. Environ. Health Part A 85 (18):767–82. doi:10.1080/15287394.2022.2081641.
  • Wasel, O., K. M. Thompson, Y. Gao, A. E. Godfrey, J. Gao, C. T. Mahapatra, L. S. Lee, M. S. Sepúlveda, and J. L. Freeman. 2021. Comparison of zebrafish in vitro and in vivo developmental toxicity assessments of perfluoroalkyl acids (PFAAs). J. Toxicol. Environ. Health Part A 84 (3):125–36. doi:10.1080/15287394.2020.1842272.
  • Xiong, Y., X. Chen, F. Li, Z. Chen, and Z. Qin. 2022. Zebrafish larvae acute toxicity test: A promising alternative to the fish acute toxicity test. Aquat. Toxicol. 246:106143. doi:10.1016/j.aquatox.2022.106143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.