76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Toxicological assessment of the Achyrocline satureioides aqueous extract in the Caenorhabditis elegans alternative model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all

References

  • Adhikari, B., B. P. Marasini, B. Rayamajhee, B. R. Bhattarai, G. Lamichhane, K. Khadayat, A. Adhikari, S. Khanal, and N. Parajuli. 2021. “Potential Roles of Medicinal Plants for the Treatment of Viral Diseases Focusing on COVID -19: A Review.” Phytotherapy Research: PTR 35 (3): 1298–1312. https://doi.org/10.1002/ptr.6893.
  • Alvino, L., M. Pacheco-Herrero, Á. I. López-Lorente, Z. Quiñones, S. Cárdenas, Z. I. González-Sánchez. 2020. “Toxicity Evaluation of Barium Ferrite Nanoparticles in Bacteria, Yeast, and Nematode.” Chemosphere 254:126786. https://doi.org/10.1016/j.chemosphere.2020.126786.
  • Aranaz, P., D. Navarro-Herrera, M. Zabala, A. Romo-Hualde, M. López-Yoldi, J. L. Vizmanos, F. I. Milagro, and C. J. González-Navarro. 2020. “Phenolic Compounds Reduce the Fat Content in Caenorhabditis Elegans by Affecting Lipogenesis, Lipolysis, and Different Stress Responses.” Pharmaceuticals 13 (11): 355. https://doi.org/10.3390/ph13110355.
  • Ayuda-Durán, B., S. González‐Manzano, I. Gil‐Sánchez, M. V. Moreno‐Arribas, B. Bartolomé, M. Sanz-Buenhombre, and A. M. González-Paramás. 2019. “Antioxidant Characterization and Biological Effects of Grape Pomace Extracts Supplementation in Caenorhabditis Elegans.” Foods 8 (2): 75. https://doi.org/10.3390/foods8020075.
  • Ayuda-Durán, B., S. González‐Manzano, A. Miranda‐Vizuete, M. Dueñdueñas, C. Santos‐Buelga, A. González-Paramás, and K.-J. Min. 2019. “Epicatechin Modulates Stress-Resistance in C. Elegans via Insulin/igf-1 Signaling Pathway.” PLOS ONE 14 (1): e0199483. https://doi.org/10.1371/journal.pone.0199483.
  • Ayuda-Durán, B., E. Sánchez-Hernández, S. González‐Manzano, C. Santos‐Buelga, and A. M. Gonzaléz-Paramás. 2022. “The Effects of Polyphenols Against Oxidative Stress in Caenorhabditis Elegans Are Determined by Coexisting Bacteria.” Frontiers in Nutrition 9:989427. https://doi.org/10.3389/fnut.2022.989427.
  • Azeem, M., M. Hanif, K. Mahmood, N. Ameer, F. Chughtai, and U. Abid. 2023. “An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review.” Polymer Bulletin 80 (1): 241–262. https://doi.org/10.1007/s00289-022-04091-8.
  • Balestrin, L. A., T. Kreutz, F. N. S. Fachel, N. Bidone, N. E. Gelsleichter, L. S. Koester, V. L. Bassani, E. Braganhol, C. L. Dora, and H. F. Teixeira. 2021. “Achyrocline satureioides (Lam.) DC (Asteraceae) Extract-Loaded Nanoemulsions as a Promising Topical Wound Healing Delivery System: In Vitro Assessments in Human Keratinocytes (HaCaT) and HET-CAM Irritant Potential.” Pharmaceutics 13 (8): 1241. https://doi.org/10.3390/pharmaceutics13081241.
  • Bastos, C. I. M., C. Dani, L. R. Cechinel, A. H. da Silva Neves, F. B. Rasia, S. E. Bianchi, E. da Silveira Loss, et al. 2023. “Achyrocline Satureioides As an Adjuvant Therapy for the Management of Mild Viral Respiratory Infections in the Context of COVID-19: Preliminary Results of a Randomized, Placebo-Controlled, and Open-Label Clinical Trial.” Phytotherapy Research: PTR 37 (11): 5354–5365. https://doi.org/10.1002/ptr.7976.
  • Blackwell, T. K., M. J. Steinbaugh, J. M. Hourihan, C. Y. Ewald, and M. Isik. 2015. “Skn-1/nrf, Stress Responses, and Aging in Caenorhabditis Elegans.” Free Radical Biology and Medicine 88:290–301. https://doi.org/10.1016/j.freeradbiomed.2015.06.008.
  • Bonomo, L. F., D. N. Silva, P. F. Boasquivis, F. A. Paiva, J. F. C. Guerra, T. A. F. Martins, Á. G. de Jesus Torres, et al. 2014. “Açaí (Euterpe Oleracea Mart.) Modulates Oxidative Stress Resistance in Caenorhabditis Elegans by Direct and Indirect Mechanisms.” PLOS ONE 9 (3): e89933. https://doi.org/10.1371/journal.pone.0089933.
  • Calahorro, F., F. Keefe, J. Dillon, L. Holden-Dye, and V. O’Connor. 2019. “Neuroligin Tuning of Pharyngeal Pumping Reveals Extrapharyngeal Modulation of Feeding in Caenorhabditis Elegans.” The Journal of Experimental Biology 222 (Pt 3): jeb189423. https://doi.org/10.1242/jeb.189423.
  • Del Valle Carranza, A., A. Saragusti, G. A. Chiabrando, F. Carrari, and R. Asis. 2020. “Effects of Chlorogenic Acid on Thermal Stress Tolerance in C. Elegans via HIF-1, HSF-1 and Autophagy.” Phytomedicine 66:153132. https://doi.org/10.1016/j.phymed.2019.153132.
  • De Souza, P. O., S. E. Bianchi, F. Figueiró, L. Heimfarth, K. S. Moresco, R. M. Gonçalves, J. B. Hoppe, et al. 2018. “Anticancer Activity of Flavonoids Isolated from Achyrocline Satureioides in Gliomas Cell Lines. 2018.” Toxicology in Vitro 51:23–33. https://doi.org/10.1016/j.tiv.2018.04.013.
  • Ferreira, P. M. P., D. D. R. Arcanjo, and A. P. Peron. 2023. “Drug Development, Brazilian Biodiversity, and Political Choices: Where Are We Heading?” Journal of Toxicology and Environmental Health, Part B 26 (5): 257–274. https://doi.org/10.1080/10937404.2023.2193762.
  • Gammon, D. B., and C. S. Sullivan. 2017. “Caenorhabditis Elegans As an Emerging Model for Virus-Host Interactions.” Journal of Virology 91 (23): e00509–17. https://doi.org/10.1128/JVI.00509-17.
  • Germovsek, E., M. Cheng, and C. Giragossian. 2021. “Allometric Scaling of Therapeutic Monoclonal Antibodies in Preclinical and Clinical Settings.” MAbs 13 (1): 1964935. https://doi.org/10.1080/19420862.2021.1964935.
  • Guha, S., M. Cao, R. M. Kane, A. M. Savino, S. Zou, and Y. Dong. 2012. “The Longevity Effect of Cranberry Extract in Caenorhabditis Elegans Is Modulated by Daf-16 and Osr-1.” Age 35 (5): 1559–1574. https://doi.org/10.1007/s11357-012-9459-x.
  • Gutierrez-Zetina, S. M., S. González‐Manzano, B. Ayuda-Durán, C. Santos‐Buelga, and A. M. González-Paramás. 2021. “Caffeic and Dihydrocaffeic Acids Promote Longevity and Increase Stress Resistance in Caenorhabditis Elegans by Modulating Expression of Stress-Related Genes.” Molecules 26 (6): 1517. https://doi.org/10.3390/molecules26061517.
  • Gu, Q., Y. Zhang, X. Fu, Z. Lu, Y. Yu, G. Chen, R. Ma, W. Kou, and Y. Lan. 2020. “Toxicity and Metabolism of 3-Bromopyruvate in Caenorhabditis Elegans.” Journal of Zhejiang University Science B 21:77–86. https://doi.org/10.1631/jzus.B1900370.
  • Hartman, J. H., S. J. Widmayer, C. M. Bergemann, D. E. King, K. S. Morton, R. F. Romersi, L. E. Jameson, et al. 2021. “Xenobiotic Metabolism and Transport in Caenorhabditis Elegans.” Journal of Toxicology and Environmental Health, Part B 24 (2): 51–94. https://doi.org/10.1080/10937404.2021.
  • Hashemi, N., D. Ommi, P. Kheyri, F. Khamesipour, W. N. Setzer, and M. Benchimol. 2021. “A Review Study on the Anti-Trichomonas Activities of Medicinal Plants.” International Journal for Parasitology, Drugs & Drug Resistance 15:92–104. https://doi.org/10.1016/j.ijpddr.2021.01.002.
  • Heinrich, M. 2010. “Ethnopharmacology and Drug Discovery.” Comprehen Nat Product II: Chemical Biology 3:351–381. https://doi.org/10.1016/b978-008045382-8.00666-3.
  • Hu, Q., Z. Liu, Y. Guo, S. Lu, H. Du, and Y. Cao. 2021. “Antioxidant Capacity of Flavonoids from Folium Artemisiae Argyi and the Molecular Mechanism in Caenorhabditis Elegans.” Journal of Ethnopharmacology 279:114398. https://doi.org/10.1016/j.jep.2021.114398.
  • Hunt, P. R. 2017. “The C. Elegans Model in Toxicity Testing.” Journal of Applied Toxicology: JAT 37 (1): 50–59. https://doi.org/10.1002/jat.3357.
  • Izquierdo, P. G., V. O’Connor, A. C. Green, L. Holden‐Dye, and J. Tattersall. 2021. “C. Elegans Pharyngeal Pumping Provides a Whole Organism Bio-Assay to Investigate Anti-Cholinesterase Intoxication and Antidotes.” NeuroToxicology 82:50–62. https://doi.org/10.1016/j.neuro.2020.11.001.
  • Kampkotter, A., T. Pielarski, R. Rohrig, C. Timpel, Y. Chovolou, W. Watjen, and R. Kahl. 2007. “The Ginkgo Biloba Extract EGb761 Reduces Stress Sensitivity, ROS Accumulation and Expression of Catalase and Glutathione S-Transferase 4 in Caenorhabditis Elegans.” Pharmacological Research: The Official Journal of the Italian Pharmacological Society 55 (2): 139–147. https://doi.org/10.1016/j.phrs.2006.11.006.
  • Langová, D., M. A. M. Córdoba, R. Sorrechia, J. Hoová, Z. Svoboda, R. Mikulíková, M. A. Correa, L. C. R. L. Pietro, and I. Márová. 2023. “Achyrocline Satureioides Hydroalcoholic Extract As a Hypoallergenic Antimicrobial Substitute of Natural Origin for Commonly Used Preservatives in Cosmetic Emulsions.” Plants (Basel) 12 (10): 2027. https://doi.org/10.3390/plants12102027.
  • Li, Z., F. Ai, J. Zhang, Z. Yu, and D. Yin. 2019. “Using Caenorhabditis Elegans for Studying Trans- and Multi-Generational Effects of Toxicants.” Journal of Visualized Experiments: JoVE 149. https://doi.org/10.3791/59367. 149
  • Li, F., J. Li, P.-H. Wang, N. Yang, J. Huang, J. Ou, T. Xu, et al. 2021. “SARS-CoV-2 Spike Promotes Inflammation and Apoptosis Through Autophagy by ROS-Suppressed PI3K/AKT/mTOR Signaling.” Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease 1867 (12): 166260. https://doi.org/10.1016/j.bbadis.2021.166260.
  • Lin, Y., N. Yang, B. Bao, L. Wang, J. Chen, and J. Liu. 2020. “Luteolin Reduces Fat Storage in Caenorhabditis Elegans by Promoting the Central Serotonin Pathway.” Food & Function 11:730–740. https://doi.org/10.1039/c9fo02095k.
  • Lobo, L. A. C., P. A. Santos, J. T. Sousa, J. N. Picada, S. E. Bianchi, V. L. Bassani, F. C. da Silva, E. M. Ethur, M. I. Goettert, and P. Pereira. 2023. “Toxicological Profile of the Hymenaea Courbaril Stem Bark Hydroalcoholic Extract Using In Vitro Bioassays and an Alternative In Vivo Caenorhabditis Elegans Model.” Journal of Toxicology and Environmental Health Part A 86 (18): 678–695. https://doi.org/10.1080/15287394.2023.2237069.
  • Lumlerdkij, N., R. Boonrak, S. Booranasubkajorn, P. Akarasereenont, and M. Heinrich. 2020. “In vitro Protective Effects of Plants Frequently Used Traditionally in Cancer Prevention in Thai Traditional Medicine: An Ethnopharmacological Study.” Journal of Ethnopharmacology 250:112409. https://doi.org/10.1016/j.jep.2019.112409.
  • Machado, V. S., C. M. Verdi, G. G. Rossi, L. I. de Souza, C. A. Teixeira, M. L. Machado, T. L. da Silveira, et al. 2022. “Antimycobacterial Activity of Achyrocline Flaccida (Asteraceae) Aqueous Extract from Southern Brazil.” Natural Product Research 36 (11): 2897–2901. https://doi.org/10.1080/14786419.2021.1931183.
  • Maciel, M. D., L. C. L. Inocêncio, M. S. Rechsteiner, B. C. Jorge, P. S. Balin, R. M. Kassuya, S. C. Heredia-Vieira, C. A. L. Cardoso, M. C. Vieira, and C. A. L. Kassuya. 2019. “Effects of Exposure to Ethanolic Extract from Achyrocline Satureioides (Lam.) D.C. Flowers on Reproductive and Developmental Parameters in Wistar Rats.” Journal of Toxicology and Environmental Health Part A 82 (5): 321–330. https://doi.org/10.1080/15287394.2019.1593904.
  • Mamouni, K., S. Zhang, X. Li, Y. Chen, Y. Yang, J. Kim, M. G. Bartlett, et al. 2018. “A Novel Flavonoid Composition Targets Androgen Receptor Signaling and Inhibits Prostate Cancer Growth in Preclinical Models.” Neoplasia 20 (8): 789–799. https://doi.org/10.1016/j.neo.2018.06.003.
  • Martínez-Busi, M., F. Arredondo, D. González, C. Echeverry, M. A. Vega-Teijido, D. Carvalho, A. Rodríguez-Haralambides, F. Rivera, F. Dajas, and J. A. Abin-Carriquiry. 2019. “Purification, Structural Elucidation, Antioxidant Capacity and Neuroprotective Potential of the Main Polyphenolic Compounds Contained in Achyrocline Satureioides (Lam) D.C. (Compositae).” Bioorganic & Medicinal Chemistry 27 (12): 2579–2591. https://doi.org/10.1016/j.bmc.2019.03.047.
  • Miranda-Vizuete, A., and E. A. Veal. 2017. “Caenorhabditis Elegans as a Model for Understanding ROS Function in Physiology and Disease.” Redox Biology 11:708–714. https://doi.org/10.1016/j.redox.2016.12.020.
  • Mo, A., Y. Liang, X. Cao, J. Jiang, Y. Liu, X. Cao, Y. Qiu, and E. Defu. 2024. “Polymer Chain Extenders Induce Significant Toxicity Through DAF-16 and SKN-1 Pathways in Caenorhabditis elegans: A Comparative Analysis.” Journal of Hazardous Materials 473:134730. https://doi.org/10.1016/j.jhazmat.2024.134730.
  • Moresco, K., A. Silveira, C. Schnorr, F. Zeidán-Chuliá, R. Bortolin, L. Bittencourt, M. Mingori, L. Heimfarth, T. Rabelo, and M. Morrone. 2017. “Supplementation with Achyrocline Satureioides Inflorescence Extracts to Pregnant and Breastfeeding Rats Induces Tissue-Specific Changes in Enzymatic Activity and Lower Neonatal Survival.” Biomedicine 5 (3): 53. https://doi.org/10.3390/biomedicines5030053.
  • Muratspahić, E., B. Retzl, L. Duerrauer, M. Freissmuth, C. F. W. Becker, and C. W. Gruber. 2021. “Genome Mining-Based Discovery of Blenny Fish-Derived Peptides Targeting the Mouse κ-Opioid Receptor.” Frontiers in Pharmacology 12:773029. https://doi.org/10.3389/fphar.2021.773029.
  • Nguyen, T. T., H. J. Uau, H. K. Kang, V. D. Nguyen, Y. M. Kim, D. W. Kim, S. A. Ahn, Y. Xia, and D. Kim. 2012. “Flavonoid-Mediated Inhibition of SARS Coronavirus 3C-Like Protease Expressed in Pichia Pastoris.” Biotechnology Letters 34 (5): 831–838. https://doi.org/10.1007/s10529-011-0845-8.
  • Park, H. H., Y. Jung, and S. V. Lee. 2017. “Survival Assays Using Caenorhabditis Elegans.” Molecules and Cells 40 (2): 90–99. https://doi.org/10.14348/molcells.2017.0017.
  • Pietsch, K., N. Saul, R. Menzel, S. R. Stürzenbaum, and C. E. W. Steinberg. 2008. “Quercetin Mediated Lifespan Extension in Caenorhabditis Elegans Is Modulated by Age-1, Daf-2, Sek-1 and Unc-43.” Biogerontology 10 (5): 565–578. https://doi.org/10.1007/s10522-008-9199-6.
  • Princz, A., F. Pelisch, and N. Tavernarakis. 2020. “Sumo Promotes Longevity and Maintains Mitochondrial Homeostasis During Ageing in Caenorhabditis Elegans.” Scientific Reports 10 (1): 15513. https://doi.org/10.1038/s41598-020-72637-9.
  • Rechavi, O., L. Houri-Zeevi, S. Anava, W. S. S. Goh, S. Y. Kerk, G. J. Hannon, and O. Hobert. 2014. “Starvation-Induced Transgenerational Inheritance of Small RNAs in C. Elegans.” Cell 158 (2): 277–287. https://doi.org/10.1016/j.cell.2014.06.020.
  • Rivera, F., E. Gervaz, C. Sere, and F. Dajas. 2004. “Toxicological Studies of the Aqueous Extract from Achyrocline Satureioides (Lam.) DC (Marcela).” Journal of Ethnopharmacology 95 (2–3): 359–362. https://doi.org/10.1016/j.jep.2004.08.013.
  • Roszkiewicz, J. A., A. Pinkas, M. R. Miah, R. L. Weitz, M. J. A. Lawes, A. J. Akinyemi, O. M. Ijomone, and M. Aschner. 2018. “C.Elegans As a Model in Developmental Neurotixicology.” Toxicology & Applied Pharmacology 354:126–135. https://doi.org/10.1016/j.taap.2018.03.016.
  • Sabini, M. C., L. N. Cariddi, F. M. Escobar, F. MañMañAs, L. Comini, E. Reinoso, S. B. Sutil, et al. 2013. “Evaluation of the Cytotoxicity, Genotoxicity, and Apoptotic Induction of an Aqueous Extract of Achyrocline Satureioides (Lam.) DC.” Food & Chemical Toxicology 60:463–470. https://doi.org/10.1016/j.fct.2013.08.005.
  • Sabini, M. C., F. M. Escobar, C. E. Tonn, S. M. Zanon, M. S. Contigiani, and L. I. Sabini. 2012. “Evaluation of Antiviral Activity of Aqueous Extracts from Achyrocline Satureioides Against Western Equine Encephalitis Virus.” Natural Product Research 26:405–415. https://doi.org/10.1080/14786419.2010.490216.
  • Salgueiro, A. C. F., V. Folmer, H. S. da Rosa, M. T. Costa, A. A. Boligon, F. R. Paula, D. H. Roos, and G. O. Puntel. 2016. “In Vitro and In Silico Antioxidant and Toxicological Activities of Achyrocline Satureioides.” Journal of Ethnopharmacology 194:6–14. https://doi.org/10.1016/j.jep.2016.08.048.
  • Santos, V. S., E. Bisen-Hersh, Y. Yu, I. R. S. Cabral, V. Nardini, M. Culbreth, J. B. T. da Rocha, F. Barbosa Jr, and M. Aschner. 2014. “Anthocyanin-Rich açaí (Euterpe Oleracea Mart.) Extract Attenuates Manganese-Induced Oxidative Stress in Rat Primary Astrocyte Cultures.” Journal of Toxicology and Environmental Health, Part A 77 (7): 390–404. https://doi.org/10.1080/15287394.2014.880392.
  • Saul, N., K. Pietsch, R. Menzel, and C. E. W. Steinberg. 2008. “Quercetin-Mediated Longevity in Caenorhabditis elegans: Is Daf-16 Involved?” Mechanisms of Ageing and Development 129 (10): 611–613. https://doi.org/10.1016/j.mad.2008.07.0S01.
  • Scharf, A., A. Piechulek, and A. Mikecz. 2013. “Effect of Nanoparticles on the Biochemical and Behavioral Aging Phenotype of the Nematode Caenorhabditis Elegans.” Agricultural Science & Technology Nano 7 (12): 10695–10703. https://doi.org/10.1021/nn403443r.
  • Shi, Y.-C., C.-W. Yu, V. H.-C. Liao, and T.-M. Pan. 2012. “Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis Elegans.” PLOS ONE 7 (6): e39515. https://doi.org/10.1371/journal.pone.0039515.
  • Siqueira, I. R., C. M. O. Simões, and V. L. Bassani. 2021. “Achyrocline Satureioides (Lam.) D.C. As a Potential Approach for Management of Viral Respiratory Infections.” Phytotherapy Research: PTR 35 (1): 3–5. https://doi.org/10.1002/ptr.6807.
  • Soares, F. G. N., G. Göethel, L. P. Kagami, G. M. Das Neves, E. Sauer, E. Birriel, J. Varela, et al. 2019. “Novel Coumarins Active Against Trypanosoma Cruzi and Toxicity Assessment Using the Animal Model Caenorhabditis Elegans.” BMC Pharmacology & Toxicology 20 (S1): 76. https://doi.org/10.1186/s40360-019-0357-z.
  • Sopezki, M. S., M. E. Josende, L. C. Cruz, J. Yúnes, J. Ventura‐Lima, and J. Zanette. 2020. “The Effects of microcystis aeruginosa Cells Lysate Containing Microcystins on Physiological and Molecular Responses in the Nematode Caenorhabditis Elegans.” Environmental Toxicology 35 (5): 591–598. https://doi.org/10.1002/tox.22894.
  • Srinivasan, S. Y., P. A. Illera, D. Kukhtar, N. Benseny-Cases, J. Cerón, J. Álvarez, and A. Laromaine. 2023. “Arrhythmic Effects Evaluated on Caenorhabditis elegans: The Case of Polypyrrole Nanoparticles.” Agricultural Science & Technology Nano 17 (17): 17273–17284. https://doi.org/10.1021/acsnano.3c05245.
  • Surco-Laos, F., J. Cabello, E. Gomez-Orte, S. Gonzalez-Manzano, A. M. Gonzalez-Paramas, C. Santos-Buelga, and M. DueñDueñAs. 2011. “Effects of O-Methylated Metabolites of Quercetin on Oxidative Stress, Thermotolerance, Lifespan and Bioavailability on Caenorhabditis Elegans.” Food & Function 2:445–456. https://doi.org/10.1039/c1fo10049a.
  • Tamagno, W. A., C. Alves, A. Pompermaier, and L. J. G. Barcellos. 2023. “Pyrethroid-Based Insecticides Exert Transgenerational, Persistent, and Chronic Effects in Caenorhabditis Elegans.” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 270:109653. https://doi.org/10.1016/j.cbpc.2023.109653.
  • Tejeda-Benitez, L., and J. Oliveiro-Verbel. 2016. “Caenorhabditis elegans, a Biological Model for Research in Toxicology.” Reviews of Environmental Contamination and Toxicology 237:1–35. https://doi.org/10.1007/978-3-319-23573-8_1.
  • Uchide, N., and H. Toyoda. 2011. “Antioxidant Therapy As a Potential Approach to Severe Influenza-Associated Complications.” Oxycedrus Needles and Berries Molecules 16 (3): 2032–2052. https://doi.org/10.3390/molecules16032032.
  • Usmani, K., S. Jain, and S. Yadav. 2023. “Mechanism of Action of Certain Medicinal Plants for the Treatment of Asthma.” Journal of Ethnopharmacology 317:116828. https://doi.org/10.1016/j.jep.2023.116828.
  • Wilson, M. A., B. Shukitt‐Hale, W. Kalt, D. K. Ingram, J. A. Joseph, and C. A. Wolkow. 2006. “Blueberry Polyphenols Increase Lifespan and Thermotolerance in Caenorhabditis Elegans.” Aging Cell 5 (1): 59–68. https://doi.org/10.1111/j.1474-9726.2006.00192.x.
  • Wu, Z., J. Zhang, Y. Wu, M. Chen, H. Hu, X. Gao, C. Li, et al. 2024. “Gelsenicine Disrupted the Intestinal Barrier of Caenorhabditis Elegans.” Chemico-Biological Interactions 395:111036. https://doi.org/10.1016/j.cbi.2024.111036.
  • Xiao, Y., L. Zhang, X. Zhu, Y. Qin, C. Yu, N. Jiang, S. Li, F. Liu, and Y. Liu. 2023. “Luteolin Promotes Pathogen Resistance in Caenorhabditis Elegans via DAF-2/DAF-16 Insulin-Like Signaling Pathway.” International Immunopharmacology 115:109679. https://doi.org/10.1016/j.intimp.2023.109679.
  • Xiao, X., Y. Zhou, C. Tan, J. Bai, Y. Zhu, J. Zhang, X. Zhou, and Y. Zhao. 2021. “Barley β-Glucan Resist Oxidative Stress of Caenorhabditis Elegans via Daf-2/daf-16 Pathway.” International Journal of Biological Macromolecules 193:1021–1031. https://doi.org/10.1016/j.ijbiomac.2021.11.067.
  • Zhang, L., A. S. Ravipati, S. R. Koyyalamudi, S. C. Jeong, N. V. Reddy, P. T. Smith, and M. Wu. 2011. “Antioxidant and Anti-Inflammatory Activities of Selected Medicinal Plants Containing Phenolic and Flavonoid Compounds.” Journal of Agricultural & Food Chemistry 59 (23): 12361–12367. https://doi.org/10.1021/jf203146e.
  • Zhao, L., B. Wu, S. Liang, D. Min, and H. Jiang. 2022. “Insight of Silkworm Pupa Oil Regulating Oxidative Stress and Lipid Metabolism in Caenorhabditis Elegans.” Foods 11 (24): 4084. https://doi.org/10.3390/foods11244084.
  • Zhou, Z., L. Zhang, L. Yang, C. Huang, W. Xia, H. Zhou, and X. Zhou. 2022. “Luteolin Protects Chondrocytes from H2O2-induced Oxidative Injury and Attenuates Osteoarthritis Progression by Activating AMPK-Nrf2 Signaling.” Oxidative Medicine and Cellular Longevity 2022:5635797. https://doi.org/10.1155/2022/5635797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.