240
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Remediation of Explosive-Contaminated Soils: Alkaline Hydrolysis and Subcritical Water Degradation

&

References

  • Bajpai, R., Parekh, D., Herrmann, S., Popovic, M., Paca, J., and Qasim, M. 2004. A kinetic model of aquoeus-phase alkali hydrolysis of 2,4,6-trinitrotoluene. J. Hazard. Mater. 106B, 55–66.
  • Balakrishnan, V.K., Halasz, A., and Hawari, J. 2003. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: New insight into degradation pathways obtained by the observation of novel intermediates. Environ. Sci. Technol. 37, 1838–1843.
  • Bernasconi, C.F. 1971. Kinetic and spectral study of some reactions of 2,4,6-trinitrotoluene in basic solution. I. Deprotonation and Janovsky complex formation. J. Org. Chem. 36, 1671–1679.
  • Bradley, P.M. and Chapelle, F.H. 1995. Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil. Environ. Sci. Technol. 29, 802–806.
  • Bruns-Nagel, D., Drzyzga, O., Steinbach, K., Schmidt, T.C., Von Löw, E., Gorontzy, T., Blotevogel, K.H., and Gemsa, D. 1998. Anaerobic/aerobic composting of 2,4,6-trinitrotoluene-contaminated soil in a reactor system. Environ. Sci. Technol. 32, 1676–1679.
  • Certini, G., Scalenghe, R., and Woods, W.I. 2013. The impact of warfare on the soil environment. Earth-Science Reviews 127, 1–15.
  • Dadkhah, A.A. and Akgerman, A. 2002. Hot water extraction with in situ wet oxidation: PAHs removal from soil. J. Hazard. Mater. B93, 307–320.
  • DeBano, L.F., Neary, D.G., and Folliott, P.F. 1998. Fire Effects on Ecosystems, Wiley, New York.
  • Emmrich, M. 1999. Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils. Environ. Sci. Technol. 33, 3802–3805.
  • Emmrich, M. 2001. Kinetics of the alkaline hydrolysis of important nitroaromatic co-contaminants of 2,4,6-trinitrotoluene in highly contaminated soils. Environ. Sci. Technol. 35, 874–877.
  • Felt, D.R., Larson, S.L., and Valente, E.J. 2002. UV-VIS spectroscopy of 2,4,6-trinitrotoluene-hydroxide reaction. Chemosphere 49, 287–295.
  • Hashimoto, S., Watanabe, K., Nose, K., and Morita, M. 2004. Remediation of soil contaminated with dioxins by subcritical water extraction. Chemosphere 54, 89–96.
  • Hawthorne, S.B., Lagadec, A.J. M., Kalderis, D., Lilke, A.V., and Miller, D.J. 2000. Pilot-scale destruction of TNT, RDX, and HMX on contaminated soils using subcritical water. Environ. Sci. Technol. 34, 3224–3228.
  • Heilmann, H.M., Wiesmann, U., and Stenstrom, M.K. 1996. Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon. Environ. Sci. Technol. 30, 1485–1492.
  • Hill, F.C., Sviatenko, L.K., Gorb, L., Okovytyy, S.I., Blaustein, G.S., and Leszczynski, J. 2012. DFT M06–2X investigation of alkaline hydrolysis of nitroaromatic compounds. Chemosphere 88, 635–643.
  • Hoffsommer, J.C., Kubose, D.A., and Glover, D.J. 1977. Kinetic isotope effects and intermediate formation for the aqueous alkaline homogeneous hydrolysis of 1,3,5-triaza-1,3,5-trinirocyclohexane (RDX). J. Phys. Chem. 81, 380–385.
  • Hwang, S., Ruff, T.J., Bouwer, E.J., Larson, S.L., and Davis, J.L. 2005. Applicability of alkaline hydrolysis for remediation of TNT-contaminated water. Water Res. 39, 4503–4511.
  • Juhasz, A.L. and Naidu, R. 2007. Explosives: Fate, dynamics, and ecological impact in terrestrial and marine environments. Rev. Environ. Contam. Toxicol. 191, 163–215.
  • Jung, J.W., Lee, G., Im, S., and Nam, K. 2013, Human health risk assessment of a civilian-accessible active firing range. Hum. Ecol. Risk Assess. 19, 807–818.
  • Kalderis, D., Hawthorne, S.B., Clifford, A.A., and Gidarakos, E. 2008. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water. J. Hazard. Mater. 159, 329–334.
  • Kronholm, J., Metsälä, H., Hartonen, K., and Riekkola, M.L. 2001. Oxidation of 4-chloro-3-methylphenol in pressurized hot/supercritical water with potassium persulfate as oxidant. Environ. Sci. Technol. 35, 3247–3251.
  • Kubátová, A., Lagadec, A.J. M., and Hawthorne, S.B. 2002. Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water. Environ. Sci. Technol. 36, 1337–1343.
  • Kuhlmann, B., Arnett, E.M., and Siskin, M. 1994. Classical organic reactions in pure superheated water. J. Org. Chem. 59, 3098–3101.
  • Lagadec, A.J. M., Miller, D.J., Lilke, A.V., and Hawthorne, S.B. 2000. Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon- and pesticide-contaminated soil. Environ. Sci. Technol. 34, 1542–1548.
  • LaGrega, M.D., Buckingham, P.L., and Evans, J.C. 2000. Hazardous Waste Management, 2nd ed., McGraw-Hill, New York.
  • Li, Z.M., Comfort, S.D., and Shea, P.J. 1997. Destruction of 2,4,6-trinitrotoluene by Fenton oxidation. J. Environ. Qual. 26, 480–487.
  • McLellan, W., Hartley, W.R., and Brower, M. 1988. Health Advisory for Hexahydro-1,3,5-trinitro-1,3,5-triazine, Technical Report No. PB90-273533, Office of Drinking Water, U. S. Environmental Protection Agency, Washington, DC.
  • Mills, A., Setha, A., and Peters, G. 2003. Alkaline hydrolysis of trinitrotoluene, TNT. Phys. Chem. Chem. Phys. 5, 3921–3927.
  • Oh, S.Y. and Shin, D.S. 2014. Treatment of diesel-contaminated soil by Fenton and persulfate oxidation with zero-valent iron. Soil Sediment Contam. 23, 180–193.
  • Oh, S.Y., Yoon, M.K., Kim, I.H., Kim, J.Y., and Bae, W. 2011. Chemical extraction of arsenic from contaminated soil under subcritical conditions. Sci. Total Environ. 409, 3066–3072.
  • Roberts, D.J., Ahman, F., and Pendharkar, S. 1996. Optimization of an aerobic polishing stage to complete the anaerobic treatment of munitions-contaminated soils. Environ. Sci. Technol. 30, 2021–2026.
  • Rogers, J.D. and Bunce, N.J. 2001. Treatment methods for the remediation of nitroaromatic explosives. Water Res. 35, 2101–2111.
  • Siskin, M., Brons, G., Katritzky, A.R., and Balasubramanian, M. 1990. Aquatic organic chemistry. 1. Aquathermolysis: Comparison with thermolysis in the reactivity of aliphatic compounds. Energy & Fuels 4, 475–482.
  • Thompson, P.L., Ramer, L.A., and Schnoor, J.L. 1998. Uptake and transformation of TNT by hybrid poplar trees. Environ. Sci. Technol. 32, 975–980.
  • Thorne, P.G., Jenkins, T.F., and Brown, M.K. 2004. Continuous Treatment of Low Levels of TNT and RDX in Range Soils Using Surface Liming, ERDC/CRRER TR-04-4, US Army Corps of Engineers Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH.
  • Weber, R., Yoshida, S., and Miwa, K. 2002. PCB destruction in subcritical and supercritical water-evaluation of PCDF formation and initial steps of degradation mechanisms. Environ. Sci. Technol. 36, 1839–1844.
  • Yinon, J. 1990. Toxicity and Metabolism of Explosives, CRC Press, Boca Raton, FL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.