194
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Genomic Analysis and Comparative Hexavalent Chromium Reduction Potential of Predominant Bacillus species Isolated from Chromite Mine Soil

, , , , &

References

  • Abdelatey, L.M., Khalil, W.K. B., Ali, T.H., and Mahrous, K.F. 2011. Heavy metal resistance and gene expression analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Egyptian soils. J. Appl. Sci. Environ. Sanitation. 6(2), 201–211.
  • Agrawal, A., Kumar, V., and Pandey, B.D. 2006. Remediation options for the treatment of electroplating and leather tannin effluent containing chromium: A review. Miner. Process. Extr. Metall. Rev. 27, 99–130.
  • Altschul, S.F., Madden, T.L., Schaeffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic. Acids. Res. 25, 3389–3402.
  • APHA. 1985. Standard Methods for the Examination of Water and Waste Water, 16th ed., American Public Health Association, Washington, DC.
  • APHA, AWWA, and WEF. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. APHA, Washington, DC.
  • Backofen, R., Bernhart, S.H., Flamm, C., Fried, C., Fritzsch, G., Hackermüller, J.R., Hertel, J., Hofacker, I.L., Missal, K., Mosig, A., Prohaska, S.J., Rose, D., Stadler, P.F., Tanzer, A.R., Washietl, S., and Will, S. 2007. RNAs everywhere: Genome-wide annotation of structured RNAs. J. Exp. Zool. B. Mol. Dev. Evol. 308(1), 1–25.
  • Badar, U., Abbas, R., and Ahmed, N. 2001. Characterization of copper and chromate resistant bacteria isolated from Karachi tanneries effluents. In: Industrial and Environmental Biotechnology, pp. 43–54 (N. Ahmed, F.M. Qureshi, and O.Y. Khan, Eds.), Horizon Scientific Press, Wymondham, UK.
  • Bae, W.C., Kang, T.G., Kang, I.K., Won, T.I., and Jeong, B.C. 2000. Reduction of hexavalent chromium by Escherichia coli ATCC33456 in batch and continuous cultures. J. Microbiol. 38, 36–39.
  • Bailey, R.W. and Scott, E.G. 1996. Diagnostic Microbiology, 2nd ed., C. V. Mosby Company, Saint Louis.
  • Barnhart, R.J. 1997. Chromium chemistry and implications for environmental fate and toxicity. J. Soil Contamin. 6(6), 561–568.
  • Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended describing new taxa of the family. Inter. J. System. Evolution Microbiol. 52, 1049–1071.
  • Billoud, B., Guerrucci, M.A., Masselot, M., and Deutsch, J.S. 2000. Cirripede phylogeny using a novel approach: molecular morphometrics. Mol. Biol. Evol. 17(10), 1435–45.
  • Cefalu, W.T. and Frank, B.H. 2004. Role of chromium in human health and in diabetes. Diabetes Care 27, 2741–2751.
  • Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J.C., and Moreno-Sanchez, R. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25, 335–347.
  • Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Inter. J. System. Evolution. Microbiol. 57, 2259–2261.
  • Cheung, K.H., Lai, H.Y., and Gu, J.D. 2006. Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J. Microbiol. Biotechnol. 16, 855–862.
  • Clark, D.P. 1994. Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microebiol. Lett. 122, 233–237.
  • Clarridge, J.E. III. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17(4), 840–862.
  • Das, A.P. and Bissoyi, A. 2011. Computational approach for comparative phylogenetic analysis of isolated chromium resistant strain Brevibacterium casei. J. Engineer. Technol. Res. 3(3), 82–87.
  • Dhal, B., Thatoi, H.N., Das, N.N., and Pandey, B.D. 2010. Reduction of hexavalent chromium by Bacillus sp. Isolated from chromite mine soils and characterization of reduced product. J. Chemical. Technol. Biotechnol. 85(11), 1471–1479.
  • Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., and Chandraraj, K. 2006. Reduction of Cr (VI) by a Bacillus sp. Biotechnol. Lett. 28, 247–252.
  • Elangovan, R., Ligy, P., and Chandraraj, K., 2010. Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl. Biochem. Biotechnol. 160, 81–97.
  • Faisal, M. and Hasnain, S. 2006. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett. Appl. Microbiol. 43, 461–466.
  • Fredrickson, J.K., Kostandarithes, H.M., Li, S.W., Plymale, A.E., and Daly, M.J. 2000. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ. Microbiol. 66, 2006–2011.
  • Ganguli, A. and Tripathi, A.K. 2001. Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa from a leather tannery effluent. J. Microbiol. Biotechnol 11, 355–361.
  • Gutierrez, A.M., Cabriales, J.J. P., and Vega, M.M. 2010. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland. Int. J. Phytorem. 12, 317–334.
  • Holt, J.G., Krieg, N.R., Sneath, P.H. A., and Staley, J.T. 1994. Bergey's Manual of Determination Bacteriology. 9th ed., Williams and Wilkins, Baltimore.
  • Issazadeh, K., Pahlaviani, M.R. M. K., and Massiha, A. 2011. Bioremediation of toxic heavy metals pollutants by Bacillus spp. isolated from Guilan Bay Sediments, north of Iran. International Conference on Biotechnology and Environment Management, IPCBEE, vol. 24, IACSIT Press, Singapore.
  • James, B.R. 2002. Chemical transformation of chromium in soils-relevance to mobility, bio-availability and remediation: In The Chromium File, No. 8. The International Chromium Development Association. Available at: http://www.icdachromium.com/pdf/publications/crfile8feb02.htm
  • Janda, J.M. and Abbott, S.L. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 45(9), 2761–4.
  • Kathiravan, M.N., Karthick, R., Muthu, N., Muthukumar, K., and Velan, M. 2010. Sono-assisted microbial reduction of chromium. Appl. Biochem. Biotechnol. 160, 2000–2013.
  • Keller, A., Förster, F., Müller, T., Dandekar, T., Schultz, J., and Wolf, M. 2010. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol. Direct. 5, 4.
  • Kim, B.J., Kim, C.J., Chun, J., Koh, Y.H., Lee, S.H., Hyun, J.W., Cha, C.Y., and Kook, Y.H. 2004. Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase beta-subunit gene (rpoB) sequences. Int. J. Syst. Evol. Microbiol. 54, 593–8.
  • Masood, F., and Malik, A. 2011. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bullet. Environ. Contamin. Toxicol. 86(1), 114–9.
  • Mathews, D.H. and Turner, D.H. 2002. Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. J. Microbiol. Biol. 317, 191–203.
  • Mclean, J. and Beveridge, T.J. 2001. Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67, 1076–1084.
  • Narayani, M. and Shetty, K.V. 2013. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Critical Rev. Environ. Sci. Technol. 43, 955–1009.
  • Novitsky, J.A. and MacSween, M.C. 1989. Microbiology of a high energy beach sediment: Evidence for an active and growing community. Marine. Biol. Progress. Ser. 52, 71–75.
  • Pal, A. and Paul, A.K. 2004. Aerobic chromate reduction by chromate-resistant bacteria isolated from serpentine soil. Microbiol. Res. 159, 347–354.
  • Philip, L. and Venkobachar, C. 1998. Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J. Environ. Engineer. 124(12), 1165–1170.
  • Rajkumar, M., Nagendran, R., Lee, K.J., and Lee, W.H. 2005. Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Curr. Microbiol. 50, 266–271.
  • Ramirez-Diaz, M.I., Diaz-Perez, C., Vargas, E., Riveros-Rosas, H., Campo-Garcia, J., and Cervantes, C. 2008. Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3), 321–332.
  • Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor, Cold Spring Harbor Laboratory, NewYork.
  • Shakoori, F.R., Tabassum, S., Rehman, A., and Shakoori, A.R. 2010. Isolation and characterization of Cr6+ reducing bacteria and their potential use in bioremediation of chromium containing wastewater. Pakistan J. Zool. 42(6), 651–658.
  • Soni, S.K., Singh, R., Awasthi, A., Singh, M., and Kalra, A. 2012. In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ. Sci. Pollut. Res. 20(3), 1661–1674.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular. Biol. Evolution. 28, 2731–2739.
  • Thacker, U. and Madamwar, D. 2005. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 21, 891–899.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgings, D.G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.
  • Viamajala, S., Smith, W.A., Sani, R.K., Apel, A.W., Petersen, N.J., Neal, L.A., Roberto, F.F., Newby, D.T. and Peyton, B.M. 2007. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction. Bioresour. Technol. 98, 612–622.
  • Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. 2000. A greedy algorithm for aligning DNAsequences. J. Comp. Biol. 7, 203–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.