230
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation of Total Petroleum Hydrocarbons From Highly Saline and Clay Soil Using Sorghum halepense (L.) Pers. and Aeluropus littoralis (Guna) Parl

, , , , , & show all

References

  • Aboh, S., and Isitekhale, H. 2014. Remediation of crude oil polluted soils: Effect of organic and inorganic nutrient source on the growth of Sweet Potato (ipomea Batata). 20th World Congress of soil science, 534–534.
  • Al-Baldawi, I. A., Abdullah, S. R. S., Anuar, N., Suja, F., and Mushrifah, I. 2015. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol. Eng. 74, 463–473.
  • Alavi, N., Mesdaghinia, A. R., Naddafi, K., Mohebali, G., Daraei, H., Maleki, A., and Alaei, L. 2014. Biodegradation of petroleum hydrocarbons in a soil polluted sample by oil-based drilling cuttings. Soil Sediment. Contam. Int. J. 23, 586–597.
  • Alexander, M. 1999. Biodegradation and Bioremediation, Gulf Professional Publishing.
  • Ansari, A. A., Gill, S. S., Gill, R., Lanza, G. R., and Newman, L. 2014. Phytoremediation: Management of Environmental Contaminants, Springer.
  • APHA. 2000. Standard methods for examination of water and wastewater. In Standard Methods for the Examination of Water and Wastewater Eaton, A. D., Clesceri, S. Lenore, and A. E. Greenberg, Eds. American Public Health Association, USA.
  • Balseiro-Romero, M., Kidd, P. S., and Monterroso, C. 2014. Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils. Int. J. Phytorem. 16, 824–839.
  • Bolton, M. 2012. Comparing two remediation alternatives for diesel-contaminated soil in the Arctic using life cycle assessment. Master thesis, Queen's University, Canada.
  • Carter, M. R. 1993. Soil Sampling and Methods of Analysis, CRC Press.
  • Cheema, S. A., Khan, M. I., Tang, X., Zhang, C., Shen, C., Malik, Z., Ali, S., Yang, J., Shen, K., and Chen, X. 2009. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J. Hazard. Mater. 166, 1226–1231.
  • Cheng, K., Lai, K., and Wong, J. 2008. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73, 791–797.
  • Cunningham, S. D., Anderson, T. A., Schwab, A. P., and Hsu, F. 1996. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron. 56, 55–114.
  • Dewis, J., and Freitas, F. 1970. Physical and chemical methods of soil and water analysis. FAO Soils Bull 10, 30–250.
  • Diab, E. A. 2008. Phytoremediation of oil contaminated desert soil using the rhizosphere effects. Glob. J. Environ. Res. 2, 66–73.
  • DiTomaso, J. M., Kyser, G. B., Oneto, S. R., Wilson, R. G., Orloff, S. B., Anderson, L. W., Wright, S. D., Roncoroni, J. A., Miller, T. L., and Prather, T. S. 2013. Weed control in natural areas in the Western United States.
  • Fan, S., Li, P., Gong, Z., Ren, W., and He, N. 2008. Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71, 1593–1598.
  • Favas, P. J., Pratas, J., Varun, M., D'Souza, R., and Paul, M. S. 2014. Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Environmental Risk Assessment of Soil Contamination, pp. 485–517. Paulo J. C. Favas, J. P., Mayank, V., D'Souza, R. and Manoj S. P.
  • Gao, Y. C., Guo, S. H., Wang, J. N., Li, D., Wang, H., and Zeng, D. H. 2014. Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 117, 486–493.
  • Garcia-Gil, J., Plaza, C., Soler-Rovira, P., and Polo, A. 2000. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32, 1907–1913.
  • Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y. Y., and Raskin, I. 1999. Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci. 96, 5973–5977.
  • Huang, X.-D., El-Alawi, Y., Gurska, J., Glick, B. R., and Greenberg, B. M. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81, 139–147.
  • Irshad, M., Ahmad, S., Pervez, A., and Inoue, M. 2015. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at hattar industrial estate, Pakistan. Int. J. Phytorem. 17, 154–158.
  • Kaimi, E., Mukaidani, T., Miyoshi, S., and Tamaki, M. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Exp. Bot. 55, 110–119.
  • Kamath, R., Rentz, J., Schnoor, J. L., and Alvarez, P. 2004. Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Petrol. Biotechnol. Develop. Persp. 151, 447–478.
  • Kathi, S., and Khan, A. B. 2011. Phytoremediation approaches to PAH contaminated soil. Indian J. Sci. Technol. 4, 56–63.
  • Khan, S., Afzal, M., Iqbal, S., and Khan, Q. M. 2013. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90, 1317–1332.
  • Kirk, J. L., Klirnomos, J. N., Lee, H., and Trevors, J. T. 2002. Phytotoxicity assay to assess plant species for phytoremediation of petroleum-contaminated soil. Biorem. J. 6, 57–63.
  • Lin, Q., and Mendelssohn, I. A. 2009. Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands. Ecol. Eng. 35, 85–91.
  • Lips, S. H., Sagi, M., Alikulov, Z., and Zhaparova, N. K. 2003. Phytoremediation of soils contaminated with heavy metals and radionuclides.
  • McPherson, A. 2007. Monitoring Phytoremediation of Petroleum Hydrocarbon Contaminated Soils in a Closed and Controlled Environment, University of Saskatchewan Saskatoon.
  • Merkl, N., Schultze-Kraft, R., and Infante, C. 2005. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut. 165, 195–209.
  • Moubasher, H., Hegazy, A., Mohamed, N., Moustafa, Y., Kabiel, H., and Hamad, A. 2015. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeterior. Biodegrad. 98, 113–120.
  • Netondo, G. W., Onyango, J. C., and Beck, E. 2004. Sorghum and salinity. Crop Sci. 44, 797–805.
  • Nichols, T., Wolf, D., Rogers, H., Beyrouty, C., and Reynolds, C. 1997. Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut. 95, 165–178.
  • Olusola, S. A., EJIRO, A. E., Tenywa, J., Taulya, G., Kawube, G., Kawuki, R., Namugwanya, M., and Santos, L. 2011. Bioremediation of a crude oil-polluted soil with Pleurotus pulmonarius and Glomus mosseae. African Crop Science Conference Proceedings, pp. 269–271.
  • Phillips, L. A., Germida, J. J., Farrell, R. E., and Greer, C. W. 2008. Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol. Biochem. 40, 3054–3064.
  • Pitombo, L. M., and Reganhan-Coneglian, C. M. 2013. Potential of Inga sp.(Inga uruguensis Hook. and Arn.) in the phytoremediation of oily compounds. Soil Sediment. Contam. Int. J. 22, 829–838.
  • Qados, A. M. A. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci. 10, 7–15.
  • Revathi, K., Haribabu, T., and Sudha, P. 2011. Phytoremediation of chromium contaminated soil using sorghum plant. Int. J. Environ. Sci. 2, 417–428.
  • Rezvani, M., and Zaefarian, F. 2011. Bioaccumulation and translocation factors of cadmium and lead in ‘Aeluropus littoralis’. Australian J. Agric. Eng. 2, 114.
  • Riser-Roberts, E. 1998. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, CRC Press.
  • Shim, H., Chauhan, S., Ryoo, D., Bowers, K., Thomas, S. M., Burken, J. G., and Wood, T. K. 2000. Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl. Environ. Microbiol. 66, 4673–4678.
  • Shrivastava, P., and Kumar, R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131.
  • Siciliano, S. D., Germida, J. J., Banks, K., and Greer, C. W. 2003. Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl. Environ. Microbiol. 69, 483–489.
  • Udo, E., and Fayemi, A. 1975. The effect of oil pollution of soil on germination, growth and nutrient uptake of corn. J. Environ. Qual. 4, 537–540.
  • USDA. 2004. Soil survey laboratory methods manual. Soil survey investigations report, 42.
  • USEPA. Method 8015B. 1986. Total petroleum hydrocarbons (TPH) analysis gasoline and diesel fuel.
  • Wang, J., Xu, H., and Guo, S. 2007. Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene. Petrol. Sci. 4, 68–75.
  • Watson, L., and Dallwitz, M. J. 1992. The Grass Genera of the World, CAB international.
  • Wise, D. L. 2000. Bioremediation of Contaminated Soils, CRC Press.
  • Wu, N., Zhang, S., Huang, H., and Christie, P. 2008. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Sci. Total Environ. 394, 230–236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.