131
Views
16
CrossRef citations to date
0
Altmetric
Articles

Enhanced Phytoextraction by As Hyperaccumulator Isatis cappadocica Spiked with Sodium Nitroprusside

& ORCID Icon

References

  • Batista, B. L., Nigar, M., Mestrot, A., Rocha, B. A., Barbosa Júnior, F., Price, A. H., Raab, A. and Feldmann, J. 2014. Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp. Bot. 65, 1467–79.
  • Beligni, M. V., and Lamattina, L. 2001. Nitric oxide in plants: The history is just beginning. Plant Cell Environ. 24, 267–278.
  • Besson-Bard, A., Pugin, A., and Wendehenne, D. 2008. New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol. 59, 21–39.
  • Chen, Y., Fu, J. W., Han, Y. H., Rathinasabapathi, B., and Ma, L. Q. 2016. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere 144, 2189–2194.
  • Chen, M., Shen, W. B., Ruan, H. H., and Xu, L. L. 2004. Effects of nitric oxide on root growth and its oxidative damage in wheat seedling under salt stress. J. Plant Physiol. Mol. Biol. 30, 569–576.
  • Chen, F., Wang, F., Sun, H. Y., Cai, Y., Mao, W. H, Zhang, G. P., Vincze, E., and Wu, F. B. 2010. Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). J. Plant Growth Regul. 29, 394–408.
  • Cunningham, S. D., and Berti, W. R. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29, 207–212.
  • Dickinson, N. M., and Pulford, I. D. 2005. Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. J. Environ. Int. 31, 609–613
  • Farnese, F. S., Oliveira, J. A., Gusman, G. S., Leão, G. A., Silveira, N. M., Silva, P. M., Ribeiro, C., and Cambraia, J. 2014. Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. Int. J. Phytorem. 16, 123–137.
  • Fletcher, R. A., Gilley, A., Sankhla, N., and Davis, T. D. 2010. Triazoles as Plant Growth Regulators and Stress Protectants. In Horticultural Reviews, pp. 55–138, Oxford, John Wiley & Sons, Inc.
  • Garbisu, C., and Alkorta, I. 2001. Phytoextraction: a cost effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 77, 229–236.
  • Gonzaga, M. I., Santos, J. A. G., and Ma, L. Q. 2006. Arsenic phytoextraction and hyperaccumulation by fern species. Sci. Agric. (Piracicaba, Braz). 63, 90–101.
  • Goswami, S., and Das, S. 2016. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotoxicol. Environ. Saf. 126, 211–218.
  • Graziano, M., Beligni, M. V., and Lamattina, L. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiol. 130, 1852–1859.
  • Grossi, L., and D'Angelo, S. 2005. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. J. Med. Chem. 48, 2622–2626.
  • Gupta, K. J., Hebelstrup, K. H., Kruger, N. J., and George Ratcliffe, R. 2014. Nitric oxide is required for homeostasis of oxygen and reactive oxygen species in barley roots under aerobic conditions. Mol. Plant. 7, 747–750.
  • Gupta, D. K., Inouhe, M., Rodríguez-Serrano, M., Romero-Puertas, M. C., and Sandalio, L. M., 2013. Oxidative stress and arsenic toxicity: Role of NADPH oxidases. Chemosphere 90, 1987–1996.
  • Hasanuzzaman, M., and Fujita, M. 2013. Heavy metals in the environment: Current status, toxic effects on plants and possible phytoremediation. In: Phytotechnologies: Remediation of Environmental Contaminants, pp. 7–73 (Anjum, N.A., Pereira, M.A., Ahmad, I., Duarte, A.C., Umar, S., and Khan, N.A. Eds), Boca Raton, FL, Taylor and Francis/CRC Press.
  • Hsu, Y. T., and Kao, C. H. 2004. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul. 42, 227–238.
  • Hu, K. D., Hu, L. Y, Li, Y. H., Zhang, F. Q., and Zhang, H. 2007. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul. 53, 173–183.
  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., and Thomas, D. J. 2011. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 123, 305–332.
  • Islam, E., Khan, M. T., and Irem, S. 2015. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol. Environ. Saf. 114, 126–33.
  • Jin, J. W., Xu, Y. F., and Huang, Y. F. 2010. Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. Afr. J. Biotechnol. 9, 1619–1627.
  • Kachout, S. S., Mansoura, A. B., Leclerc, J. C., Mechergui, R., Rejeb, M. N., and Ouerghi, Z. 2009. Effects of heavy metals on antioxidant activities of: Atriplex hortensis and A. rosea. J Appl. Bot. Food Qual. 83, 37–43.
  • Karimi, N., Ghaderian, S. M., Maroofi, H., and Schat, H. 2010a. Arsenic in soil and vegetation of a contaminated area. Int. J. Environ. Sci. Technol. 10,743–752.
  • Karimi, N., Ghaderian, S. M., Maroofi, H., and Schat, H. 2010b. Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Int. J. Phytorem. 12, 159–173.
  • Karimi, N., Ghaderian, S. M., Raab, A., Feldmann, J., and Meharg, A. A. 2009. An arsenic accumulating, hyper-tolerant brassica, Isatis cappadocica Desv. New Phytol. 184, 41–47.
  • Karimi, N., and Souri, Z. 2015. Effect of phosphorus on arsenic accumulation and detoxification in Arsenic Hyperaccumulator, Isatis cappadocica. J. Plant Growth Regul. 34, 88–95.
  • Karimi, N., Siyahat Shayesteh, L., Ghasmpour, H., and Alavi, M. 2013. Effects of arsenic on growth, photosynthetic activity and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv. J. Plant Growth Regul. 32, 823–830.
  • Karimi, N., and Souri, Z. 2016. Antioxidant enzymes and compounds complement each other during arsenic detoxification in shoots of Isatis cappadocica Desv. Chem. Ecol. 32, 937–951.
  • Kaur, G., Singh, H. P., Batish, D. R., Mahajan, P., Kohli, R. K., and Rishi, V. 2015. Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One. 10(9), e0138713. doi: 10.1371/journal.pone.0138713
  • Kazemi, N., Khavari-Nejad, R. A, Fahimi, H., Saadatmand, S., and Nejad-Sattari, T. 2010. Effect of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci. Hortic. 126, 402–407.
  • Leshem, Y. Y., and Hamaraty, E. 1996. Plant aging: the emission of NO and ethylene and effect of NO-releasing compounds on growth of pea (Pisum sativum L.) foliage. J. Plant Physiol. 148, 258–263.
  • Leterrier, M., Airaki, M., Palma, J. M., Chaki, M., Barroso, J. B., and Corpas, F. J. 2012. Arsenic triggers the nitric oxide (NO) and S-nitrosolglutathione (GSNO) metabolism in Arabidopsis. Environ. Pollut. 166, 136–143.
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382.
  • Manai, J., Gouia, H., and Corpas, F. J. 2014. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J. Plant Physiol. 171, 1028–1035.
  • Modabberi, S., and Moore, F. 2004. Environmental geochemistry of Zarshuran Au-As deposit, NW Iran. Environ. Geol. 46, 796–807.
  • Mohan, D., Pittman, C. U Jr, Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Serrano, V. G., and Gong, H. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 310, 57–73.
  • Naidu, R., Smith, E., Owens, G., Bhattacharya, P., and Nadebaum, P. 2006. Managing Arsenic in the Environment: From Soil to Human Health, p. 747, CSIRO, Collingwood.
  • Namdjoyan, S., and Kermanian, H. 2013. Exogenous nitric oxide (as sodium nitroprusside) ameliorates arsenic-induced oxidative stress in watercress (Nasturtium officinale R. Br.) plants. Sci. Hortic. 161, 350–356.
  • Ozturk, F., Duma, F., Leblebici, Z., and Temizgul, R. 2010. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ. Exp. Bot. 69, 167–174.
  • Sao, V., Nakbanpote, W., and Triravetyan, P. 2007. Cadmium accumulation by Axonopus compressus (Sw.) P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil. J. Sci. Technol. 29, 881–892.
  • Shukla, P., Singh, S., Dubey, P., Singh, A., and Singh, A. K. 2015. Nitric oxide mediated amelioration of arsenic toxicity which alters the alternative oxidase (Aox1) gene expression in Hordeum vulgare L. Ecotoxicol. Environ. Saf. 120, 59–65.
  • Siddiqui, M. H., Al-Whaibi, M. H, and Basala, M. O. 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455.
  • Signorelli, S., Corpas, F. J., Borsani, O., Barroso, J. B., and Monza, J. 2013. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicas. Plant Sci. 201–202, 137–146.
  • Singh, H. P., Batish, D. R., Kaur, G., Arora, K., and Kohli, R. K. 2008. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ. Exp. Bot. 63, 158–167.
  • Singh, A. P., Dixit, G., Kumar, A., Mishra, S., Singh, P. K., Dwivedi, S., Trivedi, P. K., Chakrabarty, D., Mallick, S., Pandey, V., Dhankher, O. P., and Tripathi, R. D. 2016. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front. Plant Sci. 6, 1272.
  • Singh, H. P., Kaur, S., Batish, D. R., Sharma, V. P., Sharma, N., and Kohli, R. K. 2009. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide. 20, 289–297.
  • Singh, V. P., Srivastava, P. K., and Prasad, S. M. 2013. Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol. Biochem. 71, 155–163.
  • Srivastava, S., and D´Souza, S. F. 2010. Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicol. Environ. Saf. 73, 1314–1322.
  • Srivastava, S., and Dubey, R. S. 2012. Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves. Acta Physiol. Plant. 34, 819–825.
  • Sun, C., Lu, L., Liu, L., Liu, W., Yu, Y., Liu, X., Hu, Y., Jin, C., and Lin, X. 2014. Nitrate reductase–mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol. 201, 1240–1250.
  • Titah, H. S., Abdullaha, S. R. S., Mushrifah, I., Anuar, N., Basri, H., and Mukhlisin, M. 2013. Effect of applying rhizobacteria and fertilizer on the growth of Ludwigia octovalvis for arsenic uptake and accumulation in phytoremediation. Ecol. Eng. 58, 303–313.
  • Tu, S., Ma, L. and Luongo, T. 2004. Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil. 258, 9–19.
  • Turgut, C., Kaite Pepe, M., and Cutright, T. J. 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut. 131, 147–154.
  • Wilson, I. D., Neill, S. J., and Hancock, J. T. 2008. Nitricoxide synthesis and signalling in plants. Plant Cell. Environ. 31, 622–631.
  • Xiong, J., An, L., Lu, H., and Zhu, C. 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230(4), 755–65.
  • Xiong, J., Fu, G., Tao, L., and Zhu, C. 2010. Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch. Biochem. Biophys. 497, 13–20.
  • Xu, L. L., Fan, Z. Y., Dong, Y. J., Kong, J., and Bai, X. Y. 2015. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biol. Plant. 59, 171–182.
  • Yoon, J., Cao, X., Zhou, Q., and Ma, L. Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368, 456–464.
  • Zhang, X. W., Zhang, M., Wang, Q. H., Qiu, X. K., Hu, G. Q., and Dong, Y. J. 2011. Effect of exogenous nitric oxide on physiological characteristic of peanut under iron-deficient stress. Plant Nutr. Fertilizer Sci. 17, 665–673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.