200
Views
0
CrossRef citations to date
0
Altmetric
Articles

The Removal of Pb and Cd from Heavily Contaminated Soil in Kayseri, Turkey by a Combined Process of Soil Washing and Electrodeposition

&

References

  • Acar, Y. B. and Alshawabkeh, A. N. 1993. Principles of electrokinetic remediation. Environ. Sci. Technol. 27 (13). doi:10.1021/es00049a002.
  • Ait Ahmed, O., Derriche, Z., Kameche, M., Bahmani, A., Souli, H., Dubujet, P., and Fleureau, J. M. 2016. Electro-remediation of lead contaminated kaolinite: An electro-kinetic treatment. Chem. Eng. Process. 100, 37–48. doi:10.1016/j.cep.2015.12.002.
  • Alcántara, M. T., Gómez, J., Pazos, M., and Sanromán, M. A. 2009. PAHs soil decontamination in two steps: desorption and electrochemical treatment. J. Hazard. Mater. 166 (1), 462–468. doi:10.1016/j.jhazmat.2008.11.050.
  • Allison, L. E. and Moodie C. D. 1965. Carbonate, In: Methods of soil analysis, part 2, pp. 1379–1400. (Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., Clark, F. E., Eds), Madison, Wisconsin, American Society of Agronomy, Soil Science Society of America.
  • Ashraf, M. A., Maah, M. J., and Yusoff, I. 2012. Chemical speciation and potential mobility of heavy metals in the soil of former tin mining catchment. Scientific World Journal, Article ID 125608, 11 pages. doi:10.1100/2012/125608.
  • Barona, A., Aranguiz, I., and Elías, A. 2001. Metal associations in soils before and after EDTA extractive decontamination: Implications for the effectiveness of further clean-up procedures. Environ. Pollut. 113 (1), 79–85. doi:10.1016/S0269-7491(00)00158-5.
  • Bahemmat, M., Farahbakhsh, M., and Kianirad, M. 2016. Humic substances-enhanced electroremediation of heavy metals contaminated soil. J. Hazard. Mater. 312, 307–318. doi:10.1016/j.jhazmat.2016.03.038.
  • Bouycous, G. J. 1962. Hydrometer method improved for making particle size analysis of soil. Agron J. 54, 464–465.
  • Chapman, H. 1965. Cation-exchange capacity, In: Methods of soil analysis – Chemical and microbiological properties, pp. 891–901 (Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., Clark, F. E., Eds), Madison, Wisconsin, American Society of Agronomy, Soil Science Society of America.
  • Chen, G. 2004. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38 (1), 11–41. doi:10.1016/j.seppur.2003.10.006.
  • Demir, A. and Koleli, N. 2013a. The effects of different salts of EDTA to lead removal from contaminated soil. Ekoloji. 22(86), 58–67. doi:10.5053/ekoloji.2013.867.
  • Demir, A. and Koleli, N. 2013b. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils. Environ. Tech. 34(6), 799–805. doi:10.1080/09593330.2012.717107.
  • Demir, A., Pamukcu, S., and Shrestha, R. A. 2015. Simultaneous removal of Pb, Cd, and Zn from heavily contaminated mine tailing soil using enhanced electrochemical process. Environ. Engin. Sci. 32 (5). doi:10.1089/ees.2014.0384.
  • Dermont, G., Bergeron, M., Mercier, G., and Richer-Lafléche, M. 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 152 (1), 1–31. doi:10.1016/j.jhazmat.2007.10.043.
  • Doumett, S., Lamperi, L., Checchini, L., Azzarello, E., Mugnai, S., Mancuso, Richer-Lafléche., S., Petruzzelli, G., and Del Bubba, M. 2008. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere. 72 (10), 1481–1490. doi:10.1016/j.chemosphere.2008.04.083.
  • Fayiga, A. O. and Saha, U. K. 2016. Soil pollution at outdoor shooting ranges: health effects, bioavailability and best management practices. Environ. Pollut. 216, 135–145
  • Finzgar, N. and Lestan, D. 2008. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution. Chemosphere 73 (9), 1484–1491. doi:10.1016/j.chemosphere.2008.07.043.
  • Finžgar, N. and Leštan, D. 2007. Multi-step leaching of Pb and Zn contaminated soils with EDTA’. Chemosphere 66 (5), 824–832. doi:10.1016/j.chemosphere.2006.06.029.
  • Gallego, J. R., Ordóñez, A., and Loredo, J. J. 2002. Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environ. Int. 27, 589–596. doi:10.1016/S0160-4120(01)00115-5.
  • Giannis, A., Nikolaou, A., Pentari, D., and Gidarakos, E. 2009. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environ. Pollut. 157 (12), 3379–3386. doi:10.1016/j.envpol.2009.06.030.
  • Hahladakis, J. N., Latsos, A., and Gidarakos, E. 2016. Performance of electroremediation in real contaminated sediments using a big cell, periodic voltage and innovative surfactants. J. Hazard. Mater. 320, 376–385. doi:10.1016/j.jhazmat.2016.08.003.
  • Hahladakis, J. N., Lekkas, N., Smponias, A., and Gidarakos, E. 2014. Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs. Chemosphere. 105, 44–52. doi:10.1016/j.chemosphere.2013.11.022.
  • Hosseini, M. M., Farahbakhsh, M., and Savaghebi, G. 2011. Chelate agents enhanced electrokinetic remediation for removal of lead and zinc from a calcareous soil. International Conference on Environment Science and Engineering. Singapore.
  • Jankaite, A. and Vasarevičius, S. 2005. Remediation technologies for soils contaminated with heavy metals. J Environ. Eng. Landsc. 8, 109a–113a. doi:10.1080/16486897.2005.9636854.
  • Jelusic, M., Grcman, H., Vodnik, D., Suhadolc, M., and Lestan, D. 2013. Functioning of metal contaminated garden soil after remediation. Environ. Pollut. 174, 63–70. doi:10.1016/j.envpol.2012.10.027.
  • Kabata-Pendias, A. and Pendias, H. 2001. Trace elements in soils and plants. Boca Raton, Florida, USA, CRC Press, 3rd edition, 2001.
  • Körbahti, B. K. and Tanyolac, A. 2009. Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor. J. Hazard. Mater. 170, 771–778. doi:10.1016/j.jhazmat.2009.05.032.
  • Lal, S., Ratna, S., Said, O. B., and Kumar, R. 2018. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ. Tech. Innov. 10, 243–263. doi:10.1016/j.eti.2018.02.011.
  • Leštan, D., Luo, C. L., and dongLi, X. 2008. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 153 (1), 3–13. doi:10.1016/j.envpol.2007.11.015.
  • Lindsay, W. L. and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42, 421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • McBride, M. B. 1994. Environmental Chemistry of Soils. NewYork, Oxford University Press.
  • Naghipour, D., Gharibi, H., Taghavi, K., and Jaafari, J. 2016. Influence of EDTA and NTA on heavy metal extraction from sandy-loam contaminated soils. J. Environ. Chem. Engin. 4 (3), 3512–3518. doi:10.1016/j.jece.2016.07.034.
  • Nelson, D. W. and Sommers, L. E. 1996. Total carbon, organic carbon, and organic matter, In: Methods of soil analysis, part 3, pp. 961–1010 (Sparks, D. L., et al., Eds), Madison, SSSA Book Series.
  • Ng, Y. S., Sen Gupta, B., and Hashim, M. A. 2014. Performance Evaluation of Two-Stage Electrokinetic Washing as Soil Remediation Method for Lead Removal using Different Wash Solutions. Electrochim. Acta. 147, 9–18. doi:10.1016/j.electacta.2014.08.124.
  • Peech, M. 1965. Hydrogen Ion Activity. In: Methods of soil analysis, part 2, pp. 914–926 (Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., Clark, F. E., Eds), Madison, American Society of Agronomy.
  • Pociecha, M. and Lestan, D. 2009. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution. J. Hazard. Mater. 165 (1–3), 533–539. doi:10.1016/j.jhazmat.2008.10.006.
  • Sangiumsak, N. and Punrattanasin P. 2014. Adsorption behavior of heavy metals on various soils. Pol. J. Environ. Stud. 23 (3), 853–865.
  • Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., and Hussain, S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171, 710–721.doi:10.1016/j.chemosphere.2016.12.116.
  • Sierra, C., Martinez, J., Menendez-Aguado J. M., Afif, E., and Gallego, J. R. 2013. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy. J. Hazard. Mater. 248–249, 194–201. doi:10.1016/j.jhazmat.2013.01.011.
  • US EPA 3050B. 1996. Acid Digestion of Sediments, Sludges, and Soils. In: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), pp. 1–12. Washington DC, US Government Printing Office.
  • US EPA 1311. 1995. Toxicity Characteristic Leaching Procedure (TCLP), In: Test Methods for Evaluation of Solid Waste vol. IA, Laboratory Manual Physical/Chemical Methods (SW 846), pp. 403–503. Washington DC, US Government Printing Office.
  • Udovic, M. and Lestan, D. 2009. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere 74 (10), 1367–1373. doi:10.1016/j.chemosphere.2008.11.013.
  • Udovic, M. and Lestan, D. 2010. Redistribution of residual Pb, Zn, and Cd in soil remediated with EDTA leaching and exposed to earthworms (Eisenia fetida). Environ. Tech. 31 (6), 655–669. doi:10.1080/09593331003610907.
  • Udovic, M. and Lestan, D. 2012. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact. Chemosphere 88, 718–724. doi:10.1016/j.chemosphere.2012.04.040.
  • Voglar, D. and Lestan, D. 2012. Electrochemical treatment of spent solution after EDTA-based soil washing. Water Res. 46 (6), 1999–2008. doi:10.1016/j.watres.2012.01.018.
  • Wang, J. Y., Huang, X. J., Kao, J. C. M., and Stabnikova, O. 2006. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology. J. Hazard. Mater. 136, 532lin u doi:10.1016/j.jhazmat.2006.01.029
  • Wei, M., Chen, J., and Wang, X. 2016. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks’, Chemosphere 156, 252–261. doi:10.1016/j.chemosphere.2016.04.106.
  • Wuana, R. A., Okieimen, F. E., and Imborvungu, J. A. 2010. Removal of heavy metals from a contaminated soil using organic chelating acids’, Int. J. Environ. Sci. Technol. 7 (3), 485–496. doi:10.1007/BF03326158.
  • Yao, B. P. 2010. The removal of heavy metal pollutants with electrowinning techniques. Thesis (Ph.D) Brown University. ProQuest Dissertations Publishing. 2010, 3430128.
  • Yong, R. N., Mohamed, A. M. O., and Warkentin, B. P. 1992. Principle of Contaminant Transport in Soils. Amsterdam, Elsevier Science Publisher.
  • Yong, R. N. and Mulligan, C. N. 2004. Natural Attenuation of the Contaminants in Soil. Boca Raton, FL, CRC Press.
  • Zhang, J. and Gao, X. 2015. Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: distributions, sources and contamination assessment. Mar. Pollut. Bull. 98, 320–327. doi:10.1016/j.marpolbul.2015.06.035.
  • Zhang, W., Huang, H., Tan, F., Wang, H., and Qiu, R. 2010. Influence of EDTA washing on the species and mobility of heavy metals residual in soils. J. Hazard. Mater. 173 (1–3), pp. 369–376. doi:10.1016/j.jhazmat.2009.08.087.
  • Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., Wei, X., and Cai, X. 2009. The study of operating variables in soil washing with EDTA. Environ. Pollut. 157 (1), 229–236. doi:10.1016/j.envpol.2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.