249
Views
0
CrossRef citations to date
0
Altmetric
Articles

Lysinibacillus sphaericus proved to have potential for the remediation of petroleum hydrocarbons

&

References

  • Atlas, R. M. and Hazen, T. C. 2011. Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history. Environ. Sci. Technol. 45, 6709–6715. doi:10.1021/es2013227
  • Bacosa, H. P. and Inoue, C. 2015. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J. Hazard. Mater. 283, 689–697. doi:10.1016/J.JHAZMAT.2014.09.068
  • Bafana, A., Chakrabarti, T., and Krishnamurthi, K. 2015. Mercuric reductase activity of multiple heavy metal-resistant Lysinibacillus sphaericus G1. J. Basic Microbiol. 55, 285–292. doi:10.1002/jobm.201300308
  • Bahuguna, A., Lily, M. K., Munjal, A., Singh, R. N., and Dangwal, K. 2011. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. J. Environ. Sci. (China). 23, 975–82. doi:10.1016/S1001-0742(10)60504-9
  • Berry, C. 2012. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 109, 1–10. doi:10.1016/J.JIP.2011.11.008
  • Bolden, A. L., Kwiatkowski, C. F., and Colborn, T. 2015. New look at BTEX: Are ambient levels a problem? Environ. Sci. Technol. 49, 5261–5276. doi:10.1021/es505316f
  • Chaudhary, P., Sahay, H., Sharma, R., Pandey, A. K., Singh, S. B., Saxena, A. K., and Nain, L. 2015. Identification and analysis of polyaromatic hydrocarbons (PAHs)—biodegrading bacterial strains from refinery soil of India. Environ. Monit. Assess. 187, 391. doi:10.1007/s10661-015-4617-0
  • de Souza Pereira Silva, D., de Lima Cavalcanti, D., de Melo, E. J. V., dos Santos, P. N. F., da Luz, E. L. P., de Gusmão, N. B., and de Queiroz Sousa, M. de F. V. 2015. Bio-removal of diesel oil through a microbial consortium isolated from a polluted environment. Int. Biodeterior. Biodegradation. 97, 85–89. doi:10.1016/J.IBIOD.2014.09.021
  • El-Naas, M. H., Acio, J. A., and El Telib, A. E. 2014. Aerobic biodegradation of BTEX: Progresses and Prospects. J. Environ. Chem. Eng. 2, 1104–1122. doi:10.1016/J.JECE.2014.04.009
  • Fuentes, S., Barra, B., Caporaso, J. G., and Seeger, M. 2016. From rare to dominant: A fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation. Appl. Environ. Microbiol. 82, 888–96. doi:10.1128/AEM.02625-15
  • Gómez-Garzón, C., Hernandez-Santana, A., and Dussan, J. 2017. A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials. PLoS One. 12(6): e0179666. doi:10.1371/journal.pone.0179666.
  • Gómez-Garzón, C., Hernández-Santana, A., and Dussán, J. 2016. Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics. 17, 709. doi:10.1186/s12864-016-3056-9
  • Hejazi, R. F., Husain, T., and Khan, F. I. 2003. Landfarming operation of oily sludge in arid region—human health risk assessment. J. Hazard. Mater. 99, 287–302. doi:10.1016/S0304-3894(03)00062-1
  • Hu, G., Li, J., and Zeng, G. 2013. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 261, 470–490. doi:10.1016/J.JHAZMAT.2013.07.069
  • Hu, G. P., Zhao, Y., Song, F. Q., Liu, B., Vasseur, L., Douglas, C., and You, M. S. 2014. Isolation, identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain, FLQ-11-1. Res. Microbiol. 165, 110–118. doi:10.1016/j.resmic.2013.11.003
  • Instituto de Hidrología, M. y E. A. 2014. Tiempo y Clima [WWW Document]. URL http://www.ideam.gov.co/web/tiempo-y-clima.
  • Instituto Geográfico Agustin Codazzi. 2013. National Laboratory of Soils [WWW Document]. URL https://www.igac.gov.co/es/contenido/areas-estrategicas/agrologia/laboratorio-nacional-de-suelos
  • International Energy Agency. 2016. Key World Energy Statistics 2016 [WWW Document]. URL https://www.iea.org/publications/freepublications/publication/key-world-energy-statistics.html.
  • Lozano, L. C. and Dussán, J. 2013. Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World J. Microbiol. Biotechnol. 29, 1383–1389. doi:10.1007/s11274-013-1301-9
  • Manchola, L. and Dussán, J. 2014. Lysinibacillus sphaericus and geobacillus sp biodegradation of petroleum hydrocarbons and biosurfactant production. Remediat. J. 25, 85–100. doi:10.1002/rem.21416
  • Masih, A., Lall, A. S., Taneja, A., and Singhvi, R. 2016. Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India. Atmos. Environ. 147, 55–66. doi:10.1016/J.ATMOSENV.2016.09.067
  • Miri, M., Rostami Aghdam Shendi, M., Ghaffari, H. R., Ebrahimi Aval, H., Ahmadi, E., Taban, E., Gholizadeh, A., Yazdani Aval, M., Mohammadi, A., and Azari, A. 2016. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere. 163, 601–609. doi:10.1016/J.CHEMOSPHERE.2016.07.088
  • Misal, S. A., Lingojwar, D. P., Lokhande, M. N., Lokhande, P. D., and Gawai, K. R. 2014. Enzymatic transformation of nitro-aromatic compounds by a flavin-free NADH azoreductase from Lysinibacillus sphaericus. Biotechnol. Lett. 36, 127–131. doi:10.1007/s10529-013-1338-8
  • Mnif, I., Mnif, S., Sahnoun, R., Maktouf, S., Ayedi, Y., Ellouze-Chaabouni, S., and Ghribi, D. 2015. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ. Sci. Pollut. Res. 22, 14852–14861. doi:10.1007/s11356-015-4488-5
  • Mnif, S., Chamkha, M., Labat, M., and Sayadi, S. 2011. Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J. Appl. Microbiol. 111, 525–536. doi:10.1111/j.1365-2672.2011.05071.x
  • Morales-Guzmán, G., Ferrera-Cerrato, R., Rivera-Cruz, M. del C., Torres-Bustillos, L. G., Arteaga-Garibay, R. I., Mendoza-López, M. R., Esquivel-Cote, R., and Alarcón, A. 2017. Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl. Soil Ecol. 121, 127–134. doi:10.1016/J.APSOIL.2017.10.003
  • Peña-Montenegro, T. D., Lozano, L., and Dussán, J. 2015. Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand. Genomic Sci. 10, 2. doi:10.1186/1944-3277-10-2
  • Poi, G., Aburto-Medina, A., Mok, P. C., Ball, A. S., and Shahsavari, E. 2017. Large scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium. Ecol. Eng. 102, 64–71. doi:10.1016/J.ECOLENG.2017.01.048
  • R Development Core Team. 2016. R: A language and environment for statistical computing. https://www.R-project.org/
  • RAE Systems. 2016. Technical Note TN-106: A Guideline for PID Instrument Response. https://www.raesystems.com/sites/default/files/content/resources/Technical-Note-106_A-Guideline-for-Pid-Instrument-Response_0.pdf
  • Rahman, A., Nahar, N., Nawani, N. N., Jass, J., Ghosh, S., Olsson, B., and Mandal, A. 2015. Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Genomics 106, 384–392. doi:10.1016/j.ygeno.2015.09.006
  • Rahman, K. S., Thahira-Rahman, J., Lakshmanaperumalsamy, P., and Banat, I. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour. Technol. 85, 257–261. doi:10.1016/S0960-8524(02)00119-0
  • Santisi, S., Cappello, S., Catalfamo, M., Mancini, G., Hassanshahian, M., Genovese, L., Giuliano, L., Yakimov, M. M., Santisi, S., Cappello, S., Catalfamo, M., Mancini, G., Hassanshahian, M., Genovese, L., Giuliano, L., and Yakimov, M. M. 2015. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian J. Microbiol. 46, 377–387. doi:10.1590/S1517-838246120131276
  • Sathishkumar, M., Binupriya, A. R., Baik, S.-H., and Yun, S.-E. 2008. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. CLEAN – Soil, Air, Water, 36, 92–96. doi:10.1002/clen.200700042
  • See Söhngen, N. L. 1913. Benzin, Petroleum, Paraffinol und Paraffin als Kohlenstoff- und Energiequelle für Mikroben. Centbl. Bakt, 37, 595–608.
  • Tao, K., Liu, X., Chen, X., Hu, X., Cao, L., and Yuan, X. 2017. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour. Technol. 224, 327–332. doi:10.1016/J.BIORTECH.2016.10.073
  • The National Institute for Occupational Safety and Health (NIOSH). 2017. Immediately Dangerous to Life or Health Values [WWW Document]. URL https://www.cdc.gov/niosh/idlh/intridl4.html.
  • U.S. Environmental Protection Agency. 2014. Code of Federal Regulations. In Appendix A to Part 423-126. Priority Pollutants. U.S. Government Publishing Office.
  • Varjani, S. J., and Upasani, V. N. 2016. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour. Technol. 222, 195–201. doi:10.1016/j.biortech.2016.10.006
  • Wang, S.-Y., Kuo, Y.-C., Hong, A., Chang, Y.-M., and Kao, C.-M. 2016. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemosphere. 164, 558–567. doi:10.1016/J.CHEMOSPHERE.2016.08.128
  • Woods, A., Watwood, M., and Schwartz, E. 2011. Identification of a toluene-degrading bacterium from a soil sample through H218O DNA stable isotope probing. Appl. Environ. Microbiol. 77, 5995–9. doi:10.1128/AEM.05689-11
  • Wu, M., Li, W., Dick, W.A., Ye, X., Chen, K., Kost, D., and Chen, L. 2017. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere. 169, 124–130. doi:10.1016/J.CHEMOSPHERE.2016.11.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.