376
Views
25
CrossRef citations to date
0
Altmetric
Articles

Exposure–Response of Wheat Cultivars to TiO2 Nanoparticles in Contrasted Soils

, , , , , , , & ORCID Icon show all

References

  • Abdul-Baki, A. A. and Anderson, J. D. 1973. Vigor determination in soybean seed by multiple criteria. Crop Sci. 13, 630. doi:10.2135/cropsci1973.0011183X001300060013x
  • Bessa da Silva, M., Abrantes, N., Nogueira, V., Gonçalves, F., Pereira, R. 2016. TiO2 nanoparticles for the remediation of eutrophic shallow freshwater systems: Efficiency and impacts on aquatic biota under a microcosm experiment. Aquat. Toxicol. 178, 58–71.
  • Castiglione, M.R., Giorgetti, L., Geri, C., and Cremonini, R. 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of vicia narbonensis l. And Zea Mays L. J. Nanoparticle Res. 13, 2443–2449.
  • Consumer Products The Nanodatabase. 2015. The project on emerging nanotechnologies [WWW Document]. http://nanodb.dk/en/analysis/consumer-products/.
  • Costa, M.V.J. Da, Sharma, P.K. 2015. Influence of titanium dioxide nanoparticles on the photosynthetic and biochemical processes in Oryza sativa. Int. J. Recent Sci. Res. 6, 2445–2451.
  • Dehkourdi, E. H. and Mosavi, M. 2013. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol. Trace Elem. Res. 155, 283–286. doi:10.1007/s12011-013-9788-3
  • DeRosa, M.C., Monreal, C., Schnitzer, M., Walsh, R., Sultan, Y. 2010. Nanotechnology in fertilizers. Nat. Nanotechnol. 5, 91–91.
  • Feizi, H., Kamali, M., Jafari, L., and Rezvani Moghaddam, P. 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 91, 506–511. doi:10.1016/j.chemosphere.2012.12.012
  • Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., and Fotovat, A. 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem. Res. 146, 101–106. doi:10.1007/s12011-011-9222-7
  • Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., and Hong, F. 2008. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? BioMetals 21, 211–217.
  • Gogos, A., Knauer, K., and Bucheli, T.D. 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60, 9781–9792.
  • Gui, X., Deng, Y., Rui, Y., Gao, B., Luo, W., Chen, S., Van Nhan, L., Li, X., Liu, S., Han, Y., Liu, L., and Xing, B. 2015. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ. Sci. Pollut. Res. 22, 17716–17723. doi:10.1007/s11356-015-4976-7
  • Hanif, H. U., Arshad, M., Ali, M. A., Ahmed, N., and Qazi, I. A. 2015. Phyto-availability of phosphorus to Lactuca sativa in response to soil applied TiO2 nanoparticles. Pakistan J. Agric. Sci. 52, 177–182.
  • International Seed Testing Association. 2015. International Rules for Seed Testing. Bassersdorf, Switzerland: International Rules for Seed Testing.
  • Keller, A. A. and Lazareva, A. 2014. Predicted releases of engineered nanomaterials: From global to regional to local. Environ. Sci. Tech. Let. 1 (1), 65–70. doi:10.1021/ez400106t
  • Kořenková, L., Šebesta, M., Urík, M., Kolenčík, M., Kratošová, G., Bujdoš, M., Vávra, I., and Dobročka, E. 2017. Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agric. Scand. Sect. B — Soil Plant Sci. 67, 285–291.
  • Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J., and Veneklaas, E. J. 2006. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann. Bot. 98, 693–713. doi:10.1093/aob/mcl106
  • Larue, C., Baratange, C., Vantelon, D., Khodja, H., Surblé, S., Elger, A., and Carrière, M. 2018. Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem. Sci. Total Environ. 630, 609–617. doi:10.1016/j.scitotenv.2018.02.264
  • Larue, C., Castillo-Michel, H., Stein, R. J., Fayard, B., Pouyet, E., Villanova, J., Magnin, V., Del Real, A. E. P., Trcera, N., Legros, S., Sorieul, S., and Sarret, G. 2016. Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectrochim. Acta - Part B At. Spectrosc. 119, 17–24. doi:10.1016/j.sab.2016.03.005
  • Larue, C., Veronesi, G., Flank, A. M., Surble, S., Herlin-Boime, N., and Carrière, M. 2012. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J. Toxicol. Environ. Health A. 75 (13–15), 722–734. doi:10.1080/15287394.2012.689800
  • Layet, C., Auffan, M., Santaella, C., Chevassus-Rosset, C., Montes, M., Ortet, P., Barakat, M., Collin, B., Legros, S., Bravin, M. N., Angeletti, B., Kieffer, I., Proux, O., Hazemann, J. L., and Doelsch, E. 2017. Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ. Sci. Technol. 51, 9756–9764. doi:10.1021/acs.est.7b02397
  • Mackevica, A. and Foss Hansen, S. 2016. Release of nanomaterials from solid nanocomposites and consumer exposure assessment – A forward-looking review. Nanotoxicology. 10, 641–653. doi:10.3109/17435390.2015.1113322
  • Mahmoodzadeh, H., Nabavi, M., Kashefi, H. 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of Canola (Brassica napus). J. Ornam. Hortic. Plants 3, 25–32.
  • Majumdar, S., Almeida, I.C., Arigi, E.A., Choi, H., VerBerkmoes, N.C., Trujillo-Reyes, J., Flores-Margez, J.P., White, J.C., Peralta-Videa, J.R., and Gardea-Torresdey, J.L. 2015. Environmental effects of nanoceria on seed production of common bean (phaseolus vulgaris) : A proteomic analysis. Environ. Sci. Technol. 49, 13283–13293.
  • McLean, E. 1982. Soil pH and lime requirement. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. American Society of Agronomy, Soil Science Society of America Madison, WI 53711 USA, pp. 199–224.
  • Meier, M., Namjesnik-Dejanovic, K., Maurice, P.A., Chin, Y.P., and Aiken, G.R. 1999. Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite. Chem. Geol. 157, 275–284.
  • Moghaddasi, S., Fotovat, A., Khoshgoftarmanesh, A. H., Karimzadeh, F., Khazaei, H. R., and Khorassani, R. 2017. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol. Environ. Saf. 144, 543–551. doi:10.1016/j.ecoenv.2017.06.074
  • Morteza, E., Moaveni, P., Farahani, H., and Kiyani, M. 2013. Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springerplus. 2, 247. doi:10.1186/2193-1801-2-247
  • Olsen, S. R., Cole, C. V., Watandbe, F., and Dean, L. 1954. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate. Washington, DC: U.S. Dep Agric Circ 939, US Government Printing Office.
  • Piccinno, F., Gottschalk, F., Seeger, S., and Nowack, B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 14, 1109. doi:10.1007/s11051-012-1109-9
  • Rafique, R., Zahra, Z., Virk, N., Shahid, M., Pinelli, E., Kallerhoff, J., Park, T. J., and Arshad, M. 2018a. Data on rhizosphere pH, phosphorus uptake and wheat growth responses upon TiO2 nanoparticles application. Data Br. 5, 91.
  • Rafique, R., Zahra, Z., Virk, N., Shahid, M., Pinelli, E., Park, T. J., Kallerhoff, J., and Arshad, M. 2018b. Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: Alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric. Ecosyst. Environ. 5, 91.
  • Raskar, S. and Laware, S. 2013. Effect of titanium dioxide nano particles. Plant Sci. Feed. 3, 103–107.
  • Rengel, Z. and Marschner, P. 2005. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 168, 305–312. doi:10.1111/j.1469-8137.2005.01558.x
  • Ryan J, Estefan G, R.A. 2001. Soil and plant analysis: laboratory manual. 2nd ed. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria. 131–134.
  • Sastry, K., Rashmi, H.B., and Rao, N.H. 2010. Nanotechnology patents as r&d indicators for disease management strategies in agriculture. J. Intellect. Prop. Rights 15, 197–205.
  • Servin, A. D., Morales, M. I., Castillo-Michel, H., Hernandez-Viezcas, J. A., Munoz, B., Zhao, L., Nunez, J. E., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. 2013. Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 47, 11592–11598. doi:10.1021/es403368j
  • Singh, P., Singh, R., Borthakur, A., Srivastava, P., Srivastava, N., Tiwary, D., and Mishra, P. K. 2016. Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy, Ecol. Environ. 1, 131–140. doi:10.1007/s40974-016-0009-8
  • Stevenson, F.J. 1985. Geochemistry of soil humic substances. In: G R Aiken, D.M.M., MacCarthy, R.L.W. and P. (Eds.), Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation and Characterization. Wiley Interscience, New York, pp. 13–53.
  • Sun, J., Pan, L., Su, Z., Zhan, Y., and Zhu, L. 2016. Interconversion between methoxylated and hydroxylated polychlorinated biphenyls in rice plants: An important but overlooked metabolic pathway. Environ. Sci. Technol. 50, 3668–3675. doi:10.1021/acs.est.6b00266
  • Tan, W., Du, W., Barrios, A. C., Armendariz, R., Zuverza-Mena, N., Ji, Z., Chang, C. H., Zink, J. I., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. 2017. Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ. Pollut. 222, 64–72. doi:10.1016/j.envpol.2017.01.002
  • Tarafdar, J. C., Raliya, R., Mahawar, H., and Rathore, I. 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric. Res. 3, 257–262. doi:10.1007/s40003-014-0113-y
  • Thandapani, K., Kathiravan, M., Namasivayam, E., Padiksan, I. A., Natesan, G., Tiwari, M., Giovanni, B., and Perumal, V. 2018. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environ. Sci. Pollut. Res. 25, 10328–10339. doi:10.1007/s11356-017-9177-0
  • Vindedahl, A. M., Strehlau, J. H., Arnold, W. A., and Penn, R. L. 2016. Organic matter and iron oxide nanoparticles: Aggregation, interactions, and reactivity. Environ. Sci. Nano. 3, 494–505. doi:10.1039/C5EN00215J
  • Walkley, A. 1947. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–264. doi:10.1097/00010694-194704000-00001
  • Windler, L., Lorenz, C., Von Goetz, N., Hungerbühler, K., Amberg, M., Heuberger, M., and Nowack, B. 2012. Release of titanium dioxide from textiles during washing. Environ. Sci. Technol. 46, 8181–8188. doi:10.1021/es301633b
  • Wu, M., Deng, J., Li, J., Li, Y., Li, J., and Xu, H. 2016. Simultaneous biological-photocatalytic treatment with strain CDS-8 and TiO2 for chlorothalonil removal from liquid and soil. J. Hazard. Mater. 320, 612–619. doi:10.1016/j.jhazmat.2016.07.063
  • Xiong, T., Dumat, C., Dappe, V., Vezin, H., Schreck, E., Shahid, M., Pierart, A., and Sobanska, S. 2017. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ. Sci. Technol. 51, 5242–5251. doi:10.1021/acs.est.6b05546
  • Zahra, Z., Arshad, M., Rafique, R., Mahmood, A., Habib, A., Qazi, I. A., and Khan, S. A. 2015. Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J. Agric. Food Chem. 63, 6876–6882. doi:10.1021/acs.jafc.5b01611
  • Zahra, Z., Waseem, N., Zahra, R., Lee, H., Badshah, M. A., Mehmood, A., Choi, H.-K., and Arshad, M. 2017. Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J. Agric. Food Chem. 65, 5598–5606. doi:10.1021/acs.jafc.7b01843
  • Zimbone, M., Cacciato, G., Sanz, R., Carles, R., Gulino, A., Privitera, V., and Grimaldi, M. G. 2016. Black TiOx photocatalyst obtained by laser irradiation in water. Catal. Commun. 84, 11–15. doi:10.1016/j.catcom.2016.05.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.