320
Views
12
CrossRef citations to date
0
Altmetric
Articles

Influence of Celery on the Remediation of PAHs-contaminated Farm Soil

, , , , , , , , & show all

References

  • Aprill, W. and Sims, R. C. 1990. Evaluation of the use of prairie grases for stimulating PAH treatment in soil. Chemosphere. 20, 253–265. doi:10.1016/0045-6535(90)90100-8
  • Brandt, K. K., Sjoholm, O. R., Krogh, K. A., Halling-Sorensen, B., and Nybroe, O. 2009. Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ. Sci. Technol. 43, 2963–2968.
  • Cai, Q. Y., Mo, C. H., Wu, Q. T., Zeng, Q. Y., Katsoyiannis, A., and Férard, J. F. 2007. Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge by different composting processes. J. Hazard. Mater. 142 (1–2), 535–542. doi:10.1016/j.jhazmat.2006.08.062
  • Calace, N., Fiorentini, R., Petronio, B. M., and Pietroletti, M. 2001. Effects of acid rain on soil humic compounds. Talanta. 54 (5), 837–846.
  • Corgie, S. C., Joner, E. J., and Leyval, C. 2003. Rhizospheric degradation of phenanthrene is a function of proximity to roots. Plant Soil. 25, 142–150.
  • Dimashki, M., Lim, L. H., Harrison, R. M., and Harrad, S. 2001. Temporal trends, temperature dependence, and relative reactivity of atmospheric polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 35 (11), 2264–2267. doi:10.1021/es000232y
  • Ding, K. Q, Luo, Y. M., Liu, S. L., and Li, Z. G. 2002. Preliminary study on remediation of phenanthrene contaminated soil by ryegrass. Soils. 4, 233–236.
  • Fan, F. Q., Dou, J. F., Ding, A. Z., Chen, H. Y., and Du, Y. C. 2011. Measurement of high molecular weight polycyclic aromatic hydrocarbons in soil using ultrasonic extraction and HPLC. J. Beijing Normal Univ. (Natural Science) 47 (3), 296–299.
  • Gao, Y. Z., Ren, L. L., Ling, W. T., Gong, S. S., Sun, B. Q., and Zhang, Y. 2010. Desorption of phenanthrene and pyrene in soils by root exudates. Bioresou. Technol. 101 (4), 1159–1165. doi:10.1016/j.biortech.2009.09.062
  • Guo, H., Chen, J. R., Zhong, B., Liu, C., Wu, J. S., He, L. Z., Ye, Z. Q., and Liu, D. 2017. Heavy metal concentration, enzyme activity, and physical and chemical properties of rhizosphere and non-rhizosphere soils containing Moso bamboo. Acta Ecol. Sin. 37 (18), 6149–6156.
  • Hassett, J. E. and Zak, D. R. 2005. Aspen harvest intensity decreased microbial biomass and extracellular enzyme activity, and soil nitrogen cycling. Soil Sci. Soc. Am. J. 69, 227–235. doi:10.2136/sssaj2005.0227
  • Heemken, O. P., Theobald, N., and Wenclawiak, B. W. 1997. Comparison of ASE and SFE with Soxhlet, sonication, and methanolic saponification extractions for the determination of organic micropollutants in marine particulate matter. Anal. Chem. 69 (11), 2171–2180. doi:10.1021/ac960695f
  • Janssen, C. R., Heijerick, D. G., De Schamphelaere, K. A. C., and Allen, H. E. 2003. Environmental risk assessment of metals: Tools for incorporating bioavailability. Environ. Int.28, 793–800. doi:10.1016/S0160-4120(02)00126-5
  • Ji, M. and Meng, L. 2014. Remediation of PAHs-contaminated soil by Watercress. Environ. Sci. Technol. 27 (5), 12–15.
  • Jones, D. L. 1998. Organic acids in the rhizosphere-acritical review. Plant Soil. 205, 25–44. doi:10.1023/A:1004356007312
  • Lee, S. H., Lee, W. S., Lee, C. H., and Kim, J. G. 2008. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J. Hazard. Mater. 153 (1–2), 892–898. doi:10.1016/j.jhazmat.2007.09.041
  • Lefevre, G. H., Hozalski, R. M., and Novak, P. J. 2013. Root exudates enhanced contaminant desorption: An abiotic contribution to the rhizosphere effect. Environ. Sci. Technol. 47 (20), 11545–11553. doi:10.1021/es402446v
  • Liste, H. H. and Alexander, M. 1999. Rapid screening of plants promoting phenanthrene degradation. J. Environ. Qual. 28, 1376–1377. doi:10.2134/jeq1999.00472425002800040044x
  • Liu, L., Song, C. Y., Yan, Z. G., and Li, F. S. 2009. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy. Chemosphere. 77 (1), 15–21. doi:10.1016/j.chemosphere.2009.06.026
  • Liu, S. L., Luo, Y. M., Ding, K. Q., and Cao, Z. H. 2003. Phytoremediation of organic pollutants in soils. Soil. 35 (3), 187–192.
  • Luo, L., Zhang, S., Shan, X. Q., and Zhu, Y. G. 2006. Oxalate and root exudates enhance the desorption of p,p’-DDT from soils. Chemosphere. 63 (8), 1273–1279. doi:10.1016/j.chemosphere.2005.10.013
  • Luo, Q., Sun, L. N., Wang, H., and Hu, X. M. 2015. Metabolic profiling analysis of root exudates from the Cd hyperaccumulator Sedum alfredii under different Cd exposure concentrations and times. Anal. Methods. 7 (9), 3793–3800. doi:10.1039/C5AY00159E
  • Luo, Q., Wang, S. Y., Sun, L. N., Wang, H., Bao, T., and Muhammad, A. 2017. Identification of root exudates from the Pb-accumulator Sedum alfredii under Pb stresses and assessment of their roles. J. Plant Interact. 12, 272–278. doi:10.1080/17429145.2017.1339837
  • Mayer, P., Fernqvist, M. M., Christensen, P. S., Karlson, U., and Trapp, S. 2007. Enhanced diffusion of polycyclic aromatic hydrocarhons in artificial and natural aqueous solutions. Environ. Sci. Technol. 41, 6148–6155.
  • Mccarty, L. S. and Mackay, D. 1993. Enhancing ecotoxicological modeling and assessment. Environ. Sci. Technol. 27, 1719–1728. doi:10.1021/es00046a001
  • Muratova, A. Y., Pozdnyakova, N. N., Golubev, S., Wittenmayer, L., Makarov, O., Merbach, W., and Turkovskaya, O. V. 2009. Oxidoreductase activity of sorghum root exudates in a phenanthrene-contaminated environment. Chemosphere. 74 (8), 1031–1036. doi:10.1016/j.chemosphere.2008.11.011
  • Northcott, G. L. and Jones, K. C. 2001. Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration. Environ. Sci. Technol. 35 (6), 1103–1110.
  • Ping, L. F., Luo, Y. M., Zhang, H. B., Li, Q. B., and Wu, L. H. 2007. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtza River Delta Region, east China. Environ. Pollut. 147 (2), 358–365. doi:10.1016/j.envpol.2006.05.027
  • Rentz, J. A., Alvarez, P. J. J., and Schnoor, J. L. 2005. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollut. 136 (3), 477–484. doi:10.1016/j.envpol.2004.12.034
  • Retnam, A., Zakaria, M. P., Juahir, H., Aris, A. Z., Zali, M. A., and Kasim, M. F. 2013. Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Mar. Pollut. Bull. 69 (1–2), 55–66. doi:10.1016/j.marpolbul.2013.01.009
  • Riley, D. and Barber, S. A. 1969. Bocarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface. Soil Sci. Soc. Am. J. 33 (6), 905–908. doi:10.2136/sssaj1969.03615995003300060031x
  • Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., Wu, S. P., Li, B. G., Cao, J., Liu, W. X., Xu, F. L., Wang, X. J., Shen, W. R., and Wong, P. K. 2005. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environ. Pollut. 134, 97–111. doi:10.1016/j.envpol.2004.07.014
  • Siciliano, S. D. and Germida, J. J. 1998. Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biol. Biochem. 30 (13), 1717–1723. doi:10.1016/S0038-0717(98)00021-2
  • Song, X. Y., Li, X. X., Lun, X. W., Ji, P. H., and Hu, X. J. 2009. Phytoremediation of polycyclic aromatic hydrocarbon contaminated farmland soil in Zhangshi wastewater Irrigation Area. Ecol. Environ. 18 (2), 531–534.
  • Sun, B. Q., Gao, Y. Z., Liu, J., and Sun, Y. D. 2012. The impact of different root exúdate components on phenanthrene availability in soil. Soil Sci. Soc. Am. J. 76 (6), 2041–2050. doi:10.2136/sssaj2011.0417
  • Sun, B. Q., Ling, W. T., and Wang, Y. Z. 2013. Can root exudate components influence the availability of pyrene in soil? J. Soils Sediments. 13, 1161–1169. doi:10.1007/s11368-013-0712-4
  • Tan, X., Chang, S., and Kabzems, R. 2008. Soil compaction and forest floor removal reducedmicrobial biomass and enzyme activities in a boreal aspen forest soil. Biol. Fertil. Soils. 44, 471–479. doi:10.1007/s00374-007-0229-3
  • Tao, S., Wang, W. T., Liu, W. X., Zuo, Q., Wang, X. L., Wang, R., Wang, B., Shen, G. F., Yang, Y. H., and He, J. S. 2011. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan plateau. J. Environ. Monit. 13 (11), 175–181. doi:10.1039/c0em00499e
  • Tao, S., Xu, F. L., Liu, W. X., Cui, Y. H., and Coveney, R. M. 2006. A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter. Environ. Sci. Technol. 40 (7), 2219–2224.
  • Wang, C., Zhu, L. Z., and Zhang, C. L. 2015. A new speciation scheme of soil polycyclic aromatic hydrocarbons for risk assessment. J. Soils Sediments. 15, 1139–1149. doi:10.1007/s11368-015-1083-9
  • Wang, C. P., Li, J., Jiang, Y., and Zhang, Z. Y. 2014a. Enhanced bioremediation of field agricultural soils contaminated with PAHs and OCPs. Int. J. Environ. Res. 8 (4), 1271–1278.
  • Wang, C. P., Yu, L., Zhang, Z. Y., Wang, B., and Sun, H. 2014b. Tourmaline combined with Phanerochaete chrysosporium to remediateagricultural soil contaminated with PAHs and OCPs. J. Hazard. Mater. 264, 439–448. doi:10.1016/j.jhazmat.2013.10.073
  • Wang, G. M. and Liu, Y. 2007. Effects of organic matters and surfactants on phyto-remediation of soil contamination by phenanthrene. Environ. Sci. Manage. 32 (11), 42–46.
  • Wang, Q., Liu, X. Y., Wei, J., Li, H. B., Li, X., Huang, Y. N., and Xia, J. 2013. Pyrene degradation effect with celery root in combined pollution soil in simulated wetland. J. Shanghai Univ. (Natural Science). 19 (4), 363–367.
  • Wang, Y. Y., Fang, L., Lin, L., Luan, T. G., and Tarn, N. F. Y. 2014c. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere. 99, 152–159. doi:10.1016/j.chemosphere.2013.10.054
  • Wei, J., Zhang, X. Y., Liu, X. Y., Liang, X., and Chen, X. P. 2017. Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils. Sci. Total Environ. 599–600, 50–57. doi:10.1016/j.scitotenv.2017.04.083
  • Wen, X., Wang, T. T., Chen, W. W., Li, Y. M., and Guo, P. 2013. Adsorption of DDT in soil using a single and combined effect of cadmium and Tween80. Chem. Ecol. 29 (4), 340–352. doi:10.1080/02757540.2013.772590
  • Wrenn, B. A. and Venosa, A. D. 1996. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can. J. Microbiol. 42, 252–258.
  • Xie, X. M., Liao, M., Yang, J., Chai, J. J., Fang, S., and Wang, R. H. 2012. Influence of rootexudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere. 88, 1190–1195. doi:10.1016/j.chemosphere.2012.03.068
  • Xu, G. H. and Zheng, H. Y. 1986. Handbook of Analytical Methods for Soil Microbiology. Beijing, China, China Agriculture Press.
  • Yang, B., Xue, N. D., Zhou, L. L., Li, F. S., Cong, X., Han, B. L., Li, H. Y., Yan, Y. Z., and Liu, B. 2012. Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China. Ecotoxicol. Environ. Saf. 84, 304–310. doi:10.1016/j.ecoenv.2012.07.027
  • Yi, H. and Crowley, D. E. 2007. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ. Sci. Technol. 41 (12), 4382–4388. doi:10.1021/es062397y
  • Zhang, A. P., Fang, L., Wang, J. L., Liu, W. P., Yuan, H. J., Jantunen, L., and Li, Y. F. 2012. Residues of currently and never used organochlorine pesticides in agricultural soils from Zhejiang Province, China. J. Agric. Food Chem. 60, 2982–2988. doi:10.1021/jf204921x
  • Zhang, H. L., Sun, L. N., Sun, T. H., Li, H. Y., and Luo, Q. 2013. Spatial distribution and seasonal variation of polycyclic aromatic hydrocarbons (PAHs) contaminations in surface water from the Hun River, Northeast China. Environ. Monit. Assess. 185, 1451–1462. doi:10.1007/s10661-012-2644-7
  • Zhao, H., Zhao, M. Q., Cheng, Y. Y., Wang, W. J., and Lu, Y. 2010. Change of different soil types on microorganisms and enzyme activity of the rhizosphere and non-rhizosphere of nanyang tobacco growing area in Henan Province. Chin. J. Soil Sci. 41 (5), 1057–1063.
  • Zhou, K. L. 1987. The Science of Soil Enzymes. Beijing, China, The Science Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.