337
Views
21
CrossRef citations to date
0
Altmetric
Articles

Evaluation of Arsenic-Induced Stress in Dahlia pinnata Cav.: Morphological and Physiological Response

, , , , , , & ORCID Icon show all

References

  • Armendariz, A. L., M. A. Talano, C. Travaglia, H. Reinoso, A. L. W. Oller, and E. Agostini. 2016. Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol. Bioch. 98:119–27. doi:10.1016/j.plaphy.2015.11.021.
  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15. doi:10.1104/pp.24.1.1.
  • Behr, H., and T. Debener. 2004. Novel breeding strategies for ornamental dahlias I: Analysis of the Dahlia variabilis breeding system with molecular markers. Eur. J. Hortic. Sci. 69:177–83.
  • Cesaro, P., C. Cattaneo, E. Bona, G. Berta, and M. Cavaletto. 2015. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci. Rep. 5:14525. doi:10.1038/srep14525.
  • Chen, G. X., and K. Asada. 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987–98.
  • Dhindsa, R. S., P. Plumb-Dhindsa, and T. A. Thorpe. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32:93–101. doi:10.1093/jxb/32.1.93.
  • Dionisio-Sese, M. L., and S. Tobita. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135:1–9. doi:10.1016/S0168-9452(98)00025-9.
  • Farooq, M. A., F. Islam, B. Ali, U. Najeeb, B. Mao, R. A. Gill, G. S. Yan, H. M. Kadambot, and W. Zhou. 2016. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 132:42–52. doi:10.1016/j.envexpbot.2016.08.004.
  • Finnegan, P. M., and W. Chen. 2012. Arsenic toxicity: the effects on plant metabolism. Front Physiol. 3:182. doi:10.3389/fphys.2012.00182.
  • Gusman, G. S., J. A. Oliveira, F. S. Farnese, and J. Cambraia. 2013. Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol. Bioch. 71:307–14. doi:10.1016/j.plaphy.2013.08.006.
  • Habiba, U., S. Ali, M. Farid, M. B. Shakoor, M. Rizwan, M. Ibrahim, G. H. Abbasi, T. Hayat, and B. Ali. 2015. EDTA enhanced plant growth, antioxidant defence system, and phytoextraction of copper by Brassica napus L. Environ. Sci. Pollut. R 22:1534–44. doi:10.1007/s11356-014-3431-5.
  • Karimi, N., and Z. Souri. 2016. Antioxidant enzymes and compounds complement each other during detoxification in shoots of Isatis cappadocica Desv. Chem. Ecol. 32:937–51. doi:10.1080/02757540.2016.1236087.
  • Khan, A. H. A., I. Nawaz, S. Yousaf, A. S. Cheema, and M. Iqbal. 2019b. Soil amendments enhanced the growth of Nicotiana alata L. and Petunia hydrida L. by stabilizing heavy metals from wastewater. J. Environ. Manage. 242:46–55. doi:10.1016/j.jenvman.2019.04.040.
  • Khan, A. H. A., T. A. Butt, C. R. Mirza, S. Yousaf, I. Nawaz, and M. Iqbal. 2019a. Combined application of selected heavy metals and EDTA reduced the growth of Petunia hybrida L. Sci. Rep. 9:4138. doi:10.1038/s41598-019-40540-7.
  • Kralova, L., J. Száková, Š. Kubík, P. Tlustoš, and J. Balík. 2010. The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil Sediment. Contam. 19:617–34. doi:10.1080/15320383.2010.499926.
  • Leão, G. A., J. A. Oliveira, R. T. A. Felipe, and F. S. Farnese. 2017. Phytoremediation of arsenic-contaminated water: the role of antioxidant metabolism of Azolla caroliniana Willd. (Salviniales). Acta Bot. Brasilica 31:161–68. doi:10.1590/0102-33062016abb0407.
  • Li, N., J. Wang, and W. Y. Song. 2016. Arsenic uptake and translocation in plants. Plant Cell Physiol. 57:4–13. doi:10.1093/pcp/pcv143.
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148:350–82.
  • Maehly, A., and B. Chance. 1954. Methods of biochemical analysis, 357–58. New York: Interscience.
  • Malik, R. N., S. Z. Husain, and I. Nazir. 2010. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak. J. Bot. 42:291–301.
  • Mascher, R., B. Lippmann, S. Holzinger, and H. Bergmann. 2002. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 163:961–69. doi:10.1016/S0168-9452(02)00245-5.
  • Noctor, G., and C. H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49:249–79. doi:10.1146/annurev.arplant.49.1.249.
  • Placek, A., A. Grobelak, and M. Kacprzak. 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int. J. Phytoremediat. 18:605–18. doi:10.1080/15226514.2015.1086308.
  • Rahman, A. M., K. Kadohashi, T. Maki, and T. K. Hasegawa. 2011. Transport of DMAA and MMAA into rice (Oryza sativa L.) roots. Environ. Exp. Bot. 72:41–46. doi:10.1016/j.envexpbot.2010.02.004.
  • Rofkar, R. J., and D. F. Dwyer. 2011. Effects of light regime, temperature, and plant age on uptake of arsenic by Spartina pectinata and Carex stricta. Int. J. Phytoremediat. 13:528–37. doi:10.1080/15226514.2010.495151.
  • Sadee, B. A., M. E. Foulkes, and S. J. Hill. 2016. A study of arsenic speciation in soil, irrigation water and plant tissue: A case study of the broad bean plant, Vicia faba. Food Chem. 210:362–70. doi:10.1016/j.foodchem.2016.04.066.
  • Schat, H., and W. M. Ten Bookum. 1992. Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–29. doi:10.1038/hdy.1992.35.
  • Shaibur, M. R., N. Kitajima, R. Sugawara, T. Kondo, S. Imamul Huq, and S. Kawai. 2009. Effect of arsenic on phytosiderophores and mineral nutrition of barley seedlings grown in iron‐depleted medium. Soil Sci. Plant Nutr. 55:283–93. doi:10.1111/j.1747-0765.2009.00360.x.
  • Shaibur, M. R., and S. Kawai. 2009. Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach. Environ. Exp. Bot. 67:65–70. doi:10.1016/j.envexpbot.2009.06.001.
  • Shaibur, M. R., and S. Kawai. 2010. Effect of arsenic on nutritional composition of Japanese mustard spinach: An ill effect of arsenic on nutritional quality of a green leafy vegetable. Nat. Sci. 8:186–94.
  • Smith, P. G., I. Koch, and K. J. Reimer. 2008. Uptake, transport and transformation of arsenate in radishes (Raphanus sativus). Sci. Total Environ. 390:188–97. doi:10.1016/j.scitotenv.2007.09.037.
  • Srivastava, S., A. Srivastava, B. Singh, P. Suprasanna, and S. Dssouza. 2013. The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biol. Plantarum. 57:885–89. doi:10.1007/s10535-012-0288-7.
  • Tripathi, R. D., S. Srivastava, S. Mishra, N. Singh, R. Tuli, D. K. Gupta, and F. J. Maathuis. 2007. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol. 25:158–65. doi:10.1016/j.tibtech.2007.02.003.
  • Upadhyaya, A., D. Sankhla, T. D. Davis, N. Sankhla, and B. Smith. 1985. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J. Plant Physiol. 121:453–61. doi:10.1016/S0176-1617(85)80081-X.
  • Upadhyaya, H., S. Shome, D. Roy, and M. K. Bhattacharya. 2014. Arsenic induced changes in growth and physiological responses in Vigna radiata seedling: effect of curcumin interaction. Am. J. Plant Sci. 5:3609–3618. doi:10.4236/ajps.2014.524377.
  • Venkatachalam, P., N. Priyanka, K. Manikandan, I. Ganeshbabu, P. Indiraarulselvi, N. Geetha, K. Muralikrishna, R. Bhattacharya, M. Tiwari, and N. Sharma. 2017. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 110:118–27. doi:10.1016/j.plaphy.2016.09.004.
  • Yahmed, J. B., T. M. de Oliveira, P. Novillo, A. Quinones, M. A. Forner, A. Salvador, Y. Froelicher, M. B. Mimoun, M. Talon, and P. Ollitrault. 2016. A simple, fast and inexpensive method to assess salt stress tolerance of aerial plant part: Investigations in the mandarin group. J. Plant Physiol. 190:36–43. doi:10.1016/j.jplph.2015.10.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.