159
Views
2
CrossRef citations to date
0
Altmetric
Articles

Comparative performance evaluation of anodic materials for electro-kinetic removal of Lead (II) from contaminated clay soil

ORCID Icon &

References

  • Abrol, I. P., J. S. P. Yadav, and F. I. Massoud. 1988. Salt-Affected soils and their management. FAO soils bulletin. Vol. 39. Rome: Food and Agriculture Organization of the United Nations.
  • Acar, Y. B., and A. N. Alshawabkeh. 1993. Principles of electrokinetic remediation. Environ. Sci. Technol. 27:2638–47. doi:10.1021/es00049a002.
  • Alcántara, M. T., J. Gómez, M. Pazos, and M. A. Sanromán. 2012. Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma 173–174:128–33. doi:10.1016/j.geoderma.2011.12.009.
  • Alshawabkeh, A., A. Yeung, and M. Bricka. 1999. Practical aspects of in-situ electrokinetic extraction. J. Environ. Eng. 125:27–35. doi:10.1061/(ASCE)0733-9372(1999)125:1(27).
  • Alshawabkeh, A. N., T. C. Sheahan, and X. Wu. 2004. Coupling of electrochemical and mechanical processes in soils under DC fields. Mech. Mater. Coupled. Chemo-Mechanical Phenom. 36:453–65.
  • Amrate, S., D. E. Akretche, C. Innocent, and P. Seta. 2005. Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction. Sci. Total Environ 349:56–66. doi:10.1016/j.scitotenv.2005.01.018.
  • Asimakopoulou, F. E., I. F. Gonos, and I. A. Stathopulos. 2012. Methodologies for determination of soil ionization gradient. J. Electrostat. 70:457–61. doi:10.1016/j.elstat.2012.07.003.
  • Bolzán, A. E., and A. J. Arvia. 2008. Electrochemical Behavior of Carbon Materials. In Adsorption by Carbons, ed. J. E. Bottani and M. D. Juan, 479–512. Elsevier.
  • Cameselle, C. 2015. Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil. Electrochim. Acta 181:31–38. doi:10.1016/j.electacta.2015.02.191.
  • Cameselle, C., and K. R. Reddy. 2012. Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim. Acta 86:10–22. doi:10.1016/j.electacta.2012.06.121.
  • Chang, J.-H., C.-D. Dong, and S.-Y. Shen. 2018. The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale. J. Hazard. Mater. 368:894–898.
  • Chang, J.-H., Z. Qiang, and C.-P. Huang. 2006. Remediation and stimulation of selected chlorinated organic solvents in unsaturated soil by a specific enhanced electrokinetics. Colloids Surf., A 287:86–93. doi:10.1016/j.colsurfa.2006.03.039.
  • Cheng, W., C. Ding, X. Wang, Z. Wu, Y. Sun, S. Yu, T. Hayat, and X. Wang. 2016. Competitive sorption of As (V) and Cr (VI) on carbonaceous nanofibers. Chem. Eng. J. 293:311–18. doi:10.1016/j.cej.2016.02.073.
  • Choi, J.-H., S. Maruthamuthu, H.-G. Lee, T.-H. Ha, and J.-H. Bae. 2009. Electrochemical studies on the performance of SS316L electrode in electrokinetics. Met. Mater. Int. 15:771–81. doi:10.1007/s12540-009-0771-z.
  • Chung, H. I., and B. H. Kang. 1999. Lead removal from contaminated marine clay by electrokinetic soil decontamination. Eng. Geol. 53:139–50. doi:10.1016/S0013-7952(99)00027-7.
  • Essa, M. H., N. D. Mu,’azu, S. Lukman, and A. Bukhari. 2013. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity. Sci. World J. 6:2013.
  • Essa, M. H., N. D. Mu’azu, S. Lukman, and A. Bukhari. 2015. Application of box-behnken design to hybrid electrokinetic-adsorption removal of mercury from contaminated saline-sodic clay soil. Soil Sediment Contam 24:30–48. doi:10.1080/15320383.2014.911720.
  • Fansheng, M., L. Lingli, W. Juling, and W. Yeyao (2013). Effect of pH control at the cathode for the electrokinetic remediation efficiency. In 2013 Third International Conference on Intelligent System Design and Engineering Applications (ISDEA), 646–50. Hong Kong, China: IEEE, 16–18 Jan. doi: 10.1177/1753193412475247
  • Galindo, L. S. G., A. Neto, M. G. C. D. Silva, and M. G. A. Vieira. 2013. Removal of cadmium (II) and lead (II) ions from aqueous phase on sodic bentonite. Mater. Res. 16:515–27. doi:10.1590/S1516-14392013005000007.
  • Gómez, J., M. T. Alcántara, M. Pazos, and M. A. Sanromán. 2009. A two-stage process using electrokinetic remediation and electrochemical degradation for treating benzo[a]pyrene spiked kaolin. Chemosphere 74:1516–21. doi:10.1016/j.chemosphere.2008.11.019.
  • Gong, Y., D. Zhao, and Q. Wang. 2018. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 147:440–60. doi:10.1016/j.watres.2018.10.024.
  • Hamed, J., Y. Acar, and R. Gale. 1991. Pb(II) Removal from Kaolinite by Electrokinetics. Int. J. Geotech. Eng 117:241–71. doi:10.1061/(ASCE)0733-9410(1991)117:2(241).
  • Ho, S. V., C. J. Athmer, P. W. Sheridan, and A. P. Shapiro. 1997. Scale-up aspects of the Lasagna(TM) process for in situ soil decontamination. J. Hazard. Mater. 55:39–60. doi:10.1016/S0304-3894(97)00016-2.
  • Hsu, C. N., A. T. Yeung, and R. M. Menon. 2011. Electrokinetic extraction of lead from kaolinites: II. Experimental investigation. Environmentalist 31:33–38. doi:10.1007/s10669-010-9298-1.
  • Huang, T., L. Liu, L. Zhou, and K. Yang. 2018. Operating optimization for the heavy metal removal from the municipal solid waste incineration fly ashes in the three-dimensional electrokinetics. Chemosphere 204:294–302. doi:10.1016/j.chemosphere.2018.04.065.
  • Hung, C.-H., C. Yuan, and K.-C. Chen. 2010. Effect of processing fluid and initial concentration on electrokinetic removal of environmental hormone—Nonylphenol (NP) from soil matrix. J. Appl. Electrochem. 40:1123–30. doi:10.1007/s10800-010-0081-2.
  • Hunter, R. J., and M. James. 1992. Charge reversal of kaolinite by hydrolyzable metal ions: An electroacoustic study. Clays Clay Miner 40:644–49. doi:10.1346/CCMN.1992.0400603.
  • Khan, F. I., T. Husain, and R. Hejazi. 2004. An overview and analysis of site remediation technologies. J. Environ. Manage. 71:95–122. doi:10.1016/j.jenvman.2004.02.003.
  • Khan, S. A., and M. A. Khan. 1995. Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Manage. 15:271–82. doi:10.1016/0956-053X(95)00025-U.
  • Kim, W.-S., G.-Y. Park, D.-H. Kim, H.-B. Jung, S.-H. Ko, and K. Baek. 2012. In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration. Electrochim. Acta 86:89–95. doi:10.1016/j.electacta.2012.02.078.
  • Lee, Y.-J., J.-H. Choi, H.-G. Lee, T.-H. Ha, and J.-H. Bae. 2012. Effect of electrode materials on electrokinetic reduction of soil salinity. Sep. Sci. Technol. 47:22–29. doi:10.1080/01496395.2011.607205.
  • Liu, L., W. Li, W. Song, and M. Guo. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ 633:206–19. doi:10.1016/j.scitotenv.2018.03.161.
  • Lukman, S., A. Bukhari, M. H. Al-Malack, N. D. Mu’azu, and M. H. Essa. 2014. Geochemical modeling of trivalent chromium migration in saline-sodic soil during lasagna process: Impact on soil physicochemical properties. Sci. World J. 2014:20.
  • Lukman, S., M. Essa, N. D. Mu’azu, A. Bukhari, and C. Basheer. 2013a. Adsorption and desorption of heavy metals onto natural clay material: Influence of initial pH. J. Environ. Sci. Technol. 6:1. doi:10.3923/jest.2013.1.15.
  • Lukman, S., M. H. Essa, N. D. Mu’azu, and A. Bukhari. 2013b. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil. Sci. World J. (2013b:9.
  • Lukman, S., N. D. Mu’azu, M. H. Essa, and A. Usman. 2015. Optimal removal of cadmium from heavily contaminated saline–sodic soil using integrated electrokinetic-adsorption technique. Arabian J. Sci. Eng. 40:1289–97. doi:10.1007/s13369-015-1605-1.
  • Ma, J. W., F. Y. Wang, Z. H. Huang, and H. Wang. 2010. Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J. Hazard. Mater. 176:715–20. doi:10.1016/j.jhazmat.2009.11.093.
  • Memon, S. Q., M. Bhanger, and M. Khuhawar. 2005. Preconcentration and separation of Cr (III) and Cr (VI) using sawdust as a sorbent. Anal. Bioanal. Chem. 383:619–24. doi:10.1007/s00216-005-3391-1.
  • Méndez, E., M. Pérez, O. Romero, E. D. Beltrán, S. Castro, J. L. Corona, A. Corona, M. C. Cuevas, and E. Bustos. 2012. Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process. Electrochim. Acta 86:148–56. doi:10.1016/j.electacta.2012.04.042.
  • Mitchell, J. K., and K. Soga. 2005. “Fundamentals of soil behavior,”. New York: John Wiley & Sons.
  • Mu’azu, N. D. 2018. Evaluation of the influence of clay montmorillonite content on the aqueous uptake of lead and zinc. Water Environ. Res 90:771–82. doi:10.2175/106143017X15131012153202.
  • Mu’azu, N. D., A. Usman, N. Jarrah, and O. Alagha. 2016b. Pulsed electrokinetic removal of chromium, mercury and cadmium from contaminated mixed clay soils. Soil Sediment Contam 25:757–75. doi:10.1080/15320383.2016.1213700.
  • Mu’azu, N. D., M. H. Essa, and S. Lukman. 2016a. Scale-up of hybrid electrokinetic–Adsorption technique for removal of heavy metals from contaminated saline-sodic clay soil. J. King Saud Univ. Eng. Sci. J. 31(2):122–30
  • Mu’azu, N. D., M. H. Essa, and S. Lukman. 2017. Response surface modeling of rate of replenishing processing fluids during hybrid electrokinetics-adsorption treatment of saline-sodic soil. Arabian J. Sci. Eng. 42:1117–27. doi:10.1007/s13369-016-2310-4.
  • Mu’azu, N. D., and N. Jarrah. 2017. Influence of bentonite proportion in natural clay on Pb2+ ions sorption: response surface methodology, kinetics and equilibrium studies. Soil Sediment Contam 26:691–708. doi:10.1080/15320383.2017.1405909.
  • Musić, S., N. Filipović-Vinceković, and L. Sekovanić. 2011. Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 28:89–94. doi:10.1590/S0104-66322011000100011.
  • Myers, R. H., and D. C. Montgomery. 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 1Ed. John Wiley& Sons Inc: New York.
  • Ng, Y.-S., B. Sen Gupta, and M. A. Hashim. 2015. Effects of operating parameters on the performance of washing–Electrokinetic two stage process as soil remediation method for lead removal. Sep. Purif. Technol. 156:403–13. doi:10.1016/j.seppur.2015.10.029.
  • Papastefanakis, N., N. Papastefanakis, D. Mantzavinos, and A. Katsaounis. 2010. DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode. J. Appl. Electrochem. 40:729–37. doi:10.1007/s10800-009-0050-9.
  • Reddy, K. R. 2011. Special issue on contaminant mixtures: Fate, transport, and remediation. Journal of Hazardous, Toxic, and Radioactive Waste 15(3):128–29. American Society of Civil Engineers.
  • Reddy, K. R., U. S. Parupudi, S. N. Devulapalli, and C. Y. Xu. 1997. Effects of soil composition on the removal of chromium by electrokinetics. J. Hazard. Mater. 55:135–58. doi:10.1016/S0304-3894(97)00020-4.
  • Rezaee, M., G. Asadollahfardi, C. Gomez-Lahoz, M. Villen-Guzman, and J. M. Paz-Garcia. 2019. Modeling of electrokinetic remediation of Cd- and Pb-contaminated kaolinite. J. Hazard. Mater. 366:630–35. doi:10.1016/j.jhazmat.2018.12.034.
  • Ribeiro, A. B., J. M. Rodriguez-Maroto, E. P. Mateus, and H. Gomes. 2005. Removal of organic contaminants from soils by an electrokinetic process: The case of atrazine.: Experimental and modeling. Chemosphere 59:1229–39. doi:10.1016/j.chemosphere.2004.11.054.
  • Saichek, R. E., and K. R. Reddy. 2003. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 51:273–87. doi:10.1016/S0045-6535(02)00849-4.
  • Suzuki, T., M. Niinae, T. Koga, T. Akita, M. Ohta, and T. Choso. 2014. EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids Surf., A 440:145–50. doi:10.1016/j.colsurfa.2012.09.050.
  • U.S EPA. 1996. Method 3050B - Acid digestion of sediments, sludges, and soils. Revision 2, 1–12. Washington, DC.
  • Uddin, M. K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308:438–62. doi:10.1016/j.cej.2016.09.029.
  • USEPA. 2007. Method 7000B - Flame atomic absorption spectrophotometry. United States Environmental Protection Agency. Washington D.C, USA: USEPA. p. 1–23.
  • Vane, L. M., and G. M. Zang. 1997. Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes. J. Hazard. Mater. 55:1–22. doi:10.1016/S0304-3894(97)00010-1.
  • Vázquez, M. V., D. A. Vasco, F. Hernández-Luis, D. Grandoso, M. Lemus, D. M. Benjumea, and C. D. Arbelo. 2009. Electrokinetic study of the buffer capacity of some soils from Tenerife.: Comparison with a volumetric technique. Geoderma 148:261–66. doi:10.1016/j.geoderma.2008.10.010.
  • Virkutyte, J., M. Sillanpää, and P. Latostenmaa. 2002. Electrokinetic soil remediation – Critical overview. Sci. Total Environ. 289:97–121. doi:10.1016/s0048-9697(01)01027-0.
  • Wang, J.-Y., X.-J. Huang, J. C. M. Kao, and O. Stabnikova. 2007. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. J. Hazard. Mater. 144:292–99. doi:10.1016/j.jhazmat.2006.10.026.
  • Yeung, A. 2006. Fundamental aspects of prolonged electrokinetic flows in kaolinites. Geomech. Geoeng. 1:13–25. doi:10.1080/17486020500528026.
  • Yeung, A. T., and -Y.-Y. Gu. 2011. A review on techniques to enhance electrochemical remediation of contaminated soils. J. Hazard. Mater. 195:11–29. doi:10.1016/j.jhazmat.2011.08.047.
  • Yuan, C., C.-H. Hung, and K.-C. Chen. 2009. Electrokinetic remediation of arsenate spiked soil assisted by CNT-Co barrier—The effect of barrier position and processing fluid. J. Hazard. Mater. 171:563–70. doi:10.1016/j.jhazmat.2009.06.059.
  • Yuan, C., and C.-H. Weng. 2001. Remediation of Cr (III) contaminated clay by electrokinetic: The effect of processing fluids. J.Chin. Environ. Eng. 11:179–86.
  • Zhang, L., Y. Zeng, and Z. Cheng. 2016. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 214:175–91. doi:10.1016/j.molliq.2015.12.013.
  • Zhang, Y., G. Chu, P. Dong, J. Xiao, Q. Meng, M. Baumgartel, B. Xu, and T. Hao. 2018. Enhanced electrokinetic remediation of lead- and cadmium-contaminated paddy soil by composite electrolyte of sodium chloride and citric acid. J. Soils Sediments 18:1915–24. doi:10.1007/s11368-017-1890-2.
  • Zulfiqar, W., M. A. Iqbal, and M. K. Butt. 2017. Pb2+ ions mobility perturbation by iron particles during electrokinetic remediation of contaminated soil. Chemosphere 169:257–61. doi:10.1016/j.chemosphere.2016.11.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.