137
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influences of Simulated Organic Residues in Petroleum-Exploiting Areas on the Dissolution and Speciation of Arsenic in Soil-Mineral Solid

&

References

  • Ascar, L., I. Ahumada, and P. Richter. 2008. Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere 72 (10):1548–52.
  • Bai, Y. H., T. T. Yang, J. S. Liang, and J. H. Qu. 2016. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res. 98:119–27.
  • Bang, S., M. D. Johnson, G. P. Korfiatis, and X. G. Meng. 2005. Chemical reactions between arsenic and zero-valent iron in water. Water Res. 39 (5):763–70.
  • Bhumbla, D. K., and R. F. Keefer 1994. Arsenic mobilization and bioavailability in soils. In Arsenic in the Environment. Part I: Cycling and Characterization, ed. Niagru, J. O., 51–82. Wiley, New York.
  • Bian, J., F. Xu, L. Li, W. Wang, J. Han, and L. Li. 2010. Determination of As(III) and As(V) in sea water by hydride generation atomic fluorescence spectrometry. Guang Pu Xue Yu Guang Pu Fen Xi. 30 (10):2834–37. (In Chinese).
  • Chatterjee, A., Das, D., Mandal, B. K., Chowdhury, T. R., Samanta, G., and Chakraborty, D. 1995.Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 1. Arsenic species in drinking water and urine of the a€ected people. Analyst. 120, 643-656.
  • Chen, T. T., Y. H. Su, and X. H. Yuan. 2018. Influences of the petroleum-recovering activity on the arsenic level in groundwater of Kuitun, Xinjiang, China. Hum. Ecol. Risk Assess. 24 (8):2195–208.
  • Chinese National Standard Agency. 1988. Determination of pH value in forest soil. GB7859-87, UDC 275 634.0.114:631.422. 171–73.
  • Chowdhury, A. N., S. Samanta, S. K. Manna, A. P. Sharma, C. Bandopadhyay, K. Pramanik, S. Sarkar, and B. P. Mohanty. 2015. Arsenic in freshwater ecosystems of the Bengal delta: Status, sources and seasonal variability. Toxico. Environ.Chem. 97 (5):538–51.
  • Das, D., A. Chatterjee, G. Samanta, B. K. Mandal, T. R. Chowdhury, P. P. Chowdhury, C. Chanda, G. Basu, D. Lodh, S. Nandi, T. Chakroborty, S. Mandal, S. M. Bhattacharya, and D. Chakraborty. 1994. Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. The Analyst. 119, 168N-170N.
  • Das, D., Chatterjee, A., Mandal, B. K., Samanta, G., Chakroborty, D., and Chanda, B. 1995.Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scales and liver tissues (biopsy) of the a€ected people. Analyst. 120, 917-924.
  • Frost, F., D. Frank, K. Pierson, L. Woodru, B. Raasina, R. Davis, and J. Davies. 1993. A seasonal study of arsenic in groundwater, snohomish county, washington, USA Environ. Geochem. Health. 15:209-213.
  • Galloway, J. M., G. T. Swindles, H. E. Jamieson, M. Palmer, M. B. Parsons, H. Sanei, A. L. Macumber, P. R. Timothy, and H. Falck. 2018. Organic matter control on the distribution of arsenic in lake sediments impacted by~65 years of gold ore processing in subarctic Canada. Sci. Total Environ. 622–623:1668–79.
  • Goldberg, S., and C. T. Johnston. 2001. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interf. Sci. 234 (1):204–16.
  • Gulens, J., D. R. Champ, and R. E. Jackson 1979. Influence of redox environments on the mobility of arsenic in groundwater. In Chemical modelling in Aqueous Systems, ed. Jenne, E. A., 81–95. American Chemical Society, Washington D.C.
  • Guzmán-Fierro, V. G., R. Moraga, C. G. León, V. L. Campos, C. Smith, and M. A. Mondaca. 2015. Isolation and characterization of an aerobic bacterial consortium able to degrade roxarsone. Int. J. Environ. Sci.Technol. 12 (4):1353–62.
  • Jiang, L. Y., Y. L. Gu, H. Q. Guo, L. Liu, and J. M. Chen. 2017. Efficient removal of 17α-ethinylestradiol (EE2) from water using freshly formed Fe-Mn binary oxide. RSC Adv. 7 (38):23802–11.
  • Keimowitz, A. R., B. J. Mailloux, P. Cole, M. Stute, H. J. Simpson, and S. N. Chillrud. 2007. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy. Environ. Sci. Technol. 41:6718–24.
  • Li, J. F., H. Gyoten, A. Sonoda, Q. Feng, and M. Xue. 2017. Removal of trace arsenic to below drinking water standards using a Mn-Fe binary oxide. RSC Adv. 7 (3):1490–97.
  • Lin, L. N., W. W. Qiu, D. Wang, Q. Huang, Z. G. Song, and H. W. Chau. 2017. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotox. Environ. Safe. 144:514–21.
  • Lin, T. Y., C. C. Wei, C. W. Huang, C. H. Chang, F. L. Hsu, and V. H. C. Liao. 2016. Both phosphorus fertilizers and indigenous bacteria enhance arsenic release into groundwater in arsenic-contaminated aquifers. J. Agr. Food Chem. 64 (11):2214–22.
  • Liu, R. F., H. H. Chen, Y. L. Wang, and F. Liu. 2007a. Analysis on characteristics of groundwater pollution in the oilfield. Groundwater. 29 (3):62–66. (in Chinese).
  • Liu, W. X., Y. M. Luo, Y. Teng, Z. H. Li, and L. H. Wu. 2007b. Eco-risk assessment and bioremediation of petroleum contaminated soil. Ⅱ. Chances in physico-chemical properties and microbial ecology of petroleum contaminated soil. Acta Pedologica Sin. 44 (5):848–53. (in Chinese).
  • Liu, Y. C., and M. Y. Chen. 2010. Analysis on current pollution of groundwater and precaution measures in oilfield area of Xinjiang. J. Water Resour. Water Eng. 21 (4):75–79. (in Chinese).
  • Mccann, C. M., C. L. Peacock, K. A. Hudson-Edwards, T. Shrimpton, N. D. Gray, and K. L. Johnson. 2018. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. J. Hazard. Mater. 342:724–31.
  • Mcguire, J. T., I. M. Cozzarelli, B. A. Bekins, H. Link, and D. Martinovic-Weigelt. 2018. Toxicity assessment of groundwater contaminated by petroleum hydrocarbons at a well-characterized, aged, crude oil release site. Environ. Sci. Technol. 52 (21):12172–78.
  • Mladenov, N., Y. Zheng, B. Simone, B. Bailey, M. Theresa, D. M. McKnight, D. Nemergut, K. A. Radloff, M. M. Rahman, and K. M. Ahmed. 2015. Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility. Environ. Sci.Technol. 49 (18):10815–24.
  • Moncure, G., P. A. Jankowski, and J. I. Drever. 1992. The hydrochemistry of arsenic in reservoir sediments, Miltown, Montana, USA. In Water rock-interaction, low temperature environments, eds. Y. K. Kharaka and A. S. Maest, Vol. 1, 513–16. A. A. Balkema, Rotterdam.
  • Müller, K., V. S. T. Ciminelli, M. S. S. Dantas, and S. Willscher. 2010. A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res. 44 (19):5660–72.
  • Niazi, N. K., and E. D. Burton. 2016. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition. Environ. Pollut. 218:111–17.
  • Nickson, R., J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, and M. Rahman. 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395 (6700):338.
  • Nickson, R. T., J. M. McArthur, P. Ravenscroft, W. G. Burgess, and K. M. Ahmed. 2000. Bengal mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl.Geochem. 15 (4):403–13.
  • Nordstrom, D. K. 2002. Worldwide occurrences of arsenic in ground water. Science 296 (5576):2143–45.
  • Omoregie, E. O., R. M. Couture, C. P. Van, C. L. Corkhill, J. M. Charnock, D. A. Polya, D. Vaughan, K. Vanbroekhoven, and J. R. Lloyd. 2013. Arsenic bioremediation by biogenic iron oxides and sulfifides. Appl. Environ. Microbiol. 79:4325–35.
  • Penke, Y. K., G. Anantharaman, J. Ramkumar, and K. K. Kar. 2019. Redox synergistic Mn-Al-Fe and Cu-Al-Fe ternary metal oxide nano adsorbents for arsenic remediation with environmentally stable As(0) formation. J. Hazard. Mater. 364:519–30.
  • Polizzotto, M. L., B. D. Kocar, S. G. Benner, M. Sampson, and S. Fendorf. 2008. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454 (7203):505–08.
  • Postgate, J. R. 1979. The sulphate-reducing bacteria.
  • Powell, J. T., P. Jain, J. Smith, T. G. Townsend, and T. M. Tolaymat. 2015. Does disposing of construction and demolition debris in unlined landfills impact groundwater quality? Evidence from 91 landfill sites in Florida. Environ. Sci. Technol. 49 (15):9029–36.
  • Redman, A. D., D. L. Macalady, and D. Ahmann. 2002. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 36 (13):2889–96.
  • Robertson, F. N. 1986. Occurrence and solubility controls of trace elements in groundwater in alluvial basins of Arizona. In regional aquifer systems of united states, southwest alluvial basins of Arizona, American water resources association monograph, series, eds. I. W. Anderson and A. I. Johnson, Vol. 7, 69–80.
  • Robertson, F. N. 1989. Arsenic in ground water under oxidizing conditions, south-west United States. Environ. Geochem. Health. 11:171–76.
  • Ryu, J. H., S. D. Gao, and K. K. Tanji. 2010. Speciation and behavior of arsenic in evaporation basins, California, USA. Environ. Earth Sci. 61 (8):1599–612.
  • Schlottmann, J. L., and G. N. Breit. 1992. Mobilization of as in the central Oklahoma aquifer, USA. In WaterRock interaction, low temperature environments, ed. Y. K. Kharaka and A. S. Maest, Vol. 1, 835–38. A. A Balkema, Rotterdam.
  • Shen, Y. Y., S. L. Zhao, Y. Li, Q. Liu, C. D. Ma, H. Mao, Y. Liao, and J. Ma. 2017. A feasible approach to dispose of soil washing wastes: Adsorptive removal of chlorobenzene compounds in aqueous solutions using humic acid modified with monoolein (HA-M). RSC Adv. 7 (16):9662–68.
  • Smedley, P. L., D. G. Kinniburgh, D. M. J. Macdonald, H. B. Nicolli, A. J. Barros, J. O. Tullio, J. M. Pearce, and M. S. Alonso. 2005. Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl. Geochem. 20 (5):989–1016.
  • Syu, C. H., P. R. Wu, C. H. Lee, K. W. Juang, and D. Y. Lee. 2019. Arsenic phytotoxicity and accumulation in rice seedlings grown in arsenic-contaminated soils as influenced by the characteristics of organic matter amendments and soils. J. Soil Sci. Plant Nutr. 182:60–71.
  • Tang, L. 2014. Study on ion adjustment agent used in sewage treatment in Xinjiang oilfield. Pet. Eng. Constr. 60 (1):61–65. (in Chinese).
  • Wagner, C. D., W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg. 1979. Handbook of X-ray photoelectron spectroscopy. Eden Prairie, MN: Perkin-Elmer Corporation, Physical Electronics Division.
  • Wan, X. S., H. Q. Wan, and J. H. Zhu. 2003. Selection and study of the growth characterization of the sulfate-reducing bacteria. Chongqing Environ. Sci. 25 (3):26–28. (in Chinese).
  • Wang, S., and C. N. Mulligan. 2006. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ. Geochem. Health. 28 (3):197–214.
  • Wang, Y. N., X. B. Zeng, Y. H. Lu, L. Y. Bai, S. M. Su, and C. X. Wu. 2017. Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils. Chemosphere 187:404–12.
  • Wu, K., H. J. Wang, R. P. Liu, X. Zhao, H. J. Liu, and J. H. Qu. 2011. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride. J. Hazard. Mater. 185 (2–3):990–95.
  • Yang, Q., H. B. Jung, C. W. Culbertson, R. G. Marvinney, M. C. Loiselle, D. B. Locke, H. Cheek, H. Thibodeau, and Y. Zheng. 2009. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in Greater Augusta, Maine. Environ.l Sci. Technol. 43 (8):2714–19.
  • Ye, H. P., Z. Y. Yang, X. Wu, J. W. Wang, D. Y. Du, J. Cai, K. L. Lv, H. Y. Chen, J. K. Mei, M. Q. Chen, et al. 2017. Sediment biomarker, bacterial community characterization of high arsenic aquifers in Jianghan Plain, China. Sci. Rep. 7:42037–42047.
  • Zhang, G., X. F. Xu, Q. H. Ji, R. P. Liu, H. J. Liu, J. H. Qu, and J. H. Li. 2017. Porous nanobimetallic Fe-Mn cubes with high valent Mn and highly efficient removal of arsenic(III). ACS Appl. Mater. Interf. 9 (17):14868–77.
  • Zhang, G. S., H. J. Liu, R. P. Liu, and J. H. Qu. 2009. Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface. J. Hazard. Mater. 168 (2–3):820–25.
  • Zhang, G. S., J. H. Qu, H. J. Liu, R. P. Liu, and R. C. Wu. 2007. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res. 41 (9):1921–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.