253
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Fate of Crude Oil in Soil Treated with Pseudomonas putida Immobilized on Coconut Coirpith a Lowcost Biocarrier

, &

References

  • Abioye, O. P., P. Agamuthu, and R. Abdul Aziz. 2012. Biodegradation of used motor oil in soil using waste amendments. Biotechnol. Res. Int. 2012:1–8. doi:10.1555/2012/587041.
  • Alexander, M. 1977. Introduction to soil microbiology. New York: Wiley & Sons.
  • Alexander, M. 2000. Aging, bioavailability and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 34 (20):4259–65.
  • Alvarez, P. J. J., and T. M. Vogel. 1995. Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Water Sci. Technol. 31 (1):15–28. doi:10.2166/wst.1995.0005.
  • Anoliefo, G., and D. Vwioko. 1995. Effects of spent lubricating oil on the growth of Capsicum annum L. and Lycopersicum esculentum Miller. Environ. Pollut. 88 (3):361–64. doi:10.1016/0269-7491(95)93451-5.
  • ASAE Standards. 2006. ASAE S313.3: Soil cone penetrometer and ASAE S358.2: Moisture measurement—Forages. American Society of Agricultural & Biological Engineers, ASABE, St. Joseph.
  • ASTM D 2216-10. 1998. Standard test methods for laboratory determination of water (Moisture) content of soil and rocky mass. Philadelphia: American Society of testing and Materials.
  • Ayotamuno, M. J., R. B. Kogbara, S. O. T. Ogaji, and S. D. Probert. 2006. Petroleum contaminated ground-water: Remediation using activated carbon. Appl. Energy 83:1258–64. doi:10.1016/j.apenergy.2006.01.004.
  • Barbato, M., F. Mapelli, E. Crotti, D. Daffonchio, and S. Borin. 2019. Cultivable hydrocarbon degrading bacteria have low phylogenetic diversity but highly versatile functional potential. Int. Biodeterior. Biodegrad. 142:43–51. doi:10.1016/j.ibiod.2019.04.012.
  • Bayat, Z., M. Hassanshahian, and S. Capello. 2015. Immobilization of microbes for bioremediation of crude oil polluted environments: A mini review. Open Microbiol. J. 9:48–54. doi:10.2174/1874285801509010048.
  • Chaudhary, D. K., R. Bajagain, S.-W. Jeong, and J. Kim. 2019. Development of a bacterial 507 consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous 508 nitrogen requirement in bioremediation of diesel-contaminated soil. W. J. Microbiol. Biotechnol. 509:35, 99.
  • Chaudhary, D. T., and J. Kim. 2019. New insights into bioremediation strategies for oil-contaminated soil in cold environments. Int. Biodeterior. Biodegrad. 142:58–72. doi:10.1016/j.ibiod.2019.05.001.
  • Clark, R. C., and D. W. Brown. 1977. Petroleum properties and analyses in biotic and abiotic systems. In Effect of petroleum on arctic and subarctic marine environments and organics. Vol 1. Nature and fate of petroleum, ed. D. C. Malias, 1–89. New York: Academic Press.
  • Cunliffe, D., C. A. Smart, C. Alexander, and E. N. Vulfson. 1999. Bacterial adhesion at synthetic surfaces. Appl. Environ. Microbiol. 65 (11):4955–5002. doi:10.1128/AEM.65.11.4995-5002.1999.
  • Das, N., and P. Chandran. 2010. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Int. doi:10.4061/2011/941810.
  • Esmaeil, A. S., and A. Akbar. 2015. Occurrence of Pseudomonas aeruginosa in Kuwait soil. Chemosphere 120:100–07. doi:10.1016/j.chemosphere.2014.06.031.
  • Farahet, L. A., and N. S. El-Gendy. 2008. Biodegradation of baleyn mix crude oil –contaminated soil microcosm by some locally isolated Egyptian bacterial strains. Soil. Sediment. Contam. 17 (2):150–62. doi:10.1080/15320380701872886.
  • Flores-Ramirez, R., F. J. Perez-Vazquez, M. Rodriguez-Aguilar, S. E. Medellin-Garibay, E. Van Brussel, A. C. Cubillas-Tejeda, L. Carrizales-Yanez, and F. Diaz-Barriga. 2017. Biomonitoring of persistent organic pollutants (POPs) in child populations living near contaminated sites in Mexico. Sci. Total Environ. 579:1120–26. doi:10.1016/j.scitotenv.2016.11.087.
  • Fowler, S. J., C. R. A. Toth, and L. M. Gieg. 2016. Community structure in methanogenic enrichments provides insights into syntrophic interactions in hydrocarbon-impacted environments. Front. Microbiol. doi:10.3389/fmicb.2016.00562.
  • Fuscaldo, F., F. Bedmr, and G. Monterubbianesi. 1999. Persistence of atrazine, metribuzin and simazine herbicides in two soils. Pesq. Agropec. Bras. 34:2037–44. doi:10.1590/S0100-204X1999001100009.
  • Geilnik, A., Y. Pechaud, D. Huguenot, A. Cebron, G. Esposito, and D. E. van Hullebusch. 2019. Bacterial seeding potential of digestate on bioremediation of diesel contaminated soil. Int. Biodeterior. Biodegrad. 143:1–8.
  • Gestel, K. V., J. Mergaert, J. Swings, J. Coosemans, and J. Ryokeboes. 2003. Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ. Pollut. 125 (3):361–68. doi:10.1016/S0269-7491(03)00109-X.
  • Hamoudi-Belarbi, L., S. Hamoudi, K. Belkacemi, L. Nouri, L. Bendifallah, and M. Khodja. 2018. Bioremediation of polluted soil sites with crude oil hydrocarbons using carrot peel waste. Environments 5:124. doi:10.3390/environments5110124.
  • Hazen, T. C. 2010. Biostimulation. In Handbook of hydrocarbon and lipid microbiology, ed. K. Timmis, 4518–30. Heidberg: Springer-Verlag.
  • Hommel, R. K. 1990. Formation and phylogenetic role of biosurfactants. J. Appl. Microbiol. 89 (1):158–119.
  • Izdebska-Mucha, D., J. Trzcińsk, M. S. Żbik, and R. L. Frost. 2011. Influence of hydrocarbon contamination on clay soil microstructure. Clay Miner. 46 (1):47–58. doi:10.1180/claymin.2011.046.1.47.
  • Jackson, M. L. 1973. Soil chemical analysis, 498. New Delhi: Prentice Hall of India Pvt. Ltd.
  • Jasmine, J., and S. Mukherji. 2015. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia. J. Environ. Manag. 149:118–25. doi:10.1016/j.jenvman.2014.10.007.
  • Khudur, L. S., E. Shahsavari, G. T. Webster, D. Nugegoda, and A. S. Ball. 2019. The impact of lead co-contamination on ecotoxicity and the bacterial community during the bioremediation of total petroleum hydrocarbon-contaminated soils. Environ. Pollut. 253:939–48. doi:10.1016/j.envpol.2019.07.107.
  • King, E. D., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301–07.
  • Lea-Smith, D., M. L. Ortz-Suarez, T. Lenn, D. J. Nurnberg, L. L. Baers, M. P. Davey, L. Parolini, R. G. Huber, C. A. R. Cotton, G. Maestroianni, et al. 2016. Hydrocarbons are essential for optimal cell size, division and growth of cyanobacteria. Plant Physiol. 172:1928–40. doi:10.1104/pp.16.01205.
  • Liu, Q., Q. Li, N. Wang, D. Liu, L. Zan, L. Chang, X. Gou, and P. Wang. 2018. Bioremediation of petroleum-contaminated soil using aged refuse from landfills. Waste Manag. 77:576–85. doi:10.1016/j.wasman.2018.05.010.
  • Lu, J., and P. H. Toy. 2009. Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem. Rev. 109 (2):815–38. doi:10.1021/cr8004444.
  • Lu, L., H. Yazdi, S. Jin, Y. Zuo, P. Fallgren, and Z. J. Ren. 2014. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J. Hazard. Mater. 274C:8–15. doi:10.1016/j.jhazmat.2014.03.060.
  • Maletic, S., B. Dalmacija, and S. Roncevic. 2013. Petroleum hydrocarbon biodegradability in soil-implications for bioremediation. INTECH.
  • Manager, N. 1976. Focus on pH and lime. Nutr. Manager 3 (2): University of Maryland Extension. https://extension.umd.edu/sites/default/files/images/progress/anmp/pH-newsltr.pdf.
  • Margaritis, A., and F. J. Merchant. 1984. Advances in ethanol production using immobilised cell system. Crit. Rev. Biotechnol. 2:339–93.
  • Martin, A. M., ed. 1998. Bioconversion of waste materials to industrial products. New York: Springer.
  • Merline Sheela, A., R. Shanmugasundaram, and M. D. Sundaram. 2005. Effect of organic amendments on the oxygen uptake of Pseudomonas putida- PAPs −1 in chromium contaminated pond ash. Soil Sediment. Contam. 14 (1):71–84. doi:10.1080/15320380590891826.
  • Molina-Barahona, L., R. Rodriguez-Vazquez, M. Hernandez-Velasco, C. vega-Jarquin, O. Zapata-Perez, A. Mendoza-Cantu, and A. Albores. 2004. Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Appl. Soil Ecol. 27:165–75. doi:10.1016/j.apsoil.2004.04.002.
  • Norouzbahari, S., R. Roostaazad, and M. Hesampour. 2009. Crude oil desalted effluent treatment by a hybrid UF/RO membrane separation process. Desalination 238 (1–3):174–82. doi:10.1016/j.desal.2008.01.045.
  • Nwogu, T. P., C. C. Azubuike, and C. J. Ogugbue. 2015. Enhanced bioremediation of soil artificially contaminated with petroleum hydrocarbons after amendments with Capra aegagrus hircus (Goat manure). Biotechnol. Res. Int. 1–7. doi:10.1155/2015/657349.
  • O’Reily, K. T., R. E. Mohles, D. H. Zemo, S. Ahn, A. K. Tiwary, R. I. Magaw, C. A. Devene, and K. A. Synoweic. 2015. Identification of easter metabolites from petroleum hydrocarbon biodegradation in groundwater using GCxGC-TOFMS. Environ. Toxicol. Chem. 34 (7):1959–61. doi:10.1002/etc.3022.
  • Odu, C. T. I. 1981. Degradation and weathering of crude oil under tropical condition. Proceeding of the international seminar on the petroleum industry and the Nigerian environment, 143–53. Warri, Nigeria, November.
  • Pinholt, Y., S. Struwe, and A. Kjoller. 1979. Microbial changes during oil decomposition in soil. Holar Ecol. 2:195–200.
  • Prabhu, S. R., and G. V. Thomas. 2002. Biological conversion of coir pith into a value-added organic resources and its application in agri-horticulture: Current status prospects and perspective. J. Plant. Crops 30 (1):1–17.
  • Rahman, K. S. M., G. Street, R. Lord, G. Kane, and I. M. Banat. 2004. Bioremediation of hydrocarbon contaminated gasoline station soil by a bacterial consortium. Coastal environment V, incorporating oilspill studies, ed. C. A. brebbia, J. M. Saval Perez, and L. Garcia Andion, WIT Press. ISBN 1–85312–710-8.
  • Ramdass, K., M. Megharaj, K. Venkateswarlu, and R. Naidu. 2016. Soil bacterial strains with 609 heavy metal resistance and high potential in degrading diesel oil and n-alkanes. Int. J. Environ. Sci. Technol. 13:2863–74. doi:10.1007/s13762-016-1113-1.
  • Rasiah, V., R. P. Voroney, P. H. Groenevelt, and R. G. Kachanoski. 1990. Modifications in soil water retention and hydraulic conductivity by an oily waste. Soil Technol 31 (4):367–72. doi:10.1016/0933-3630(90)90017-W.
  • Raveh, A., and Y. Avnimelech. 1979. Total nitrogen analysis in water, soil and plant material with persulphate oxidation. Water Res. 13 (9):911–12. doi:10.1016/0043-1354(79)90227-6.
  • Rhykerd, B., B. Crews, K. J. Mclnnes, and R. W. Weaver. 1999. Impact of bulking agents, forced aeration and tillage on remediation of oil-contaminated soil. Bioresour. Technol. 67 (3):279–85. doi:10.1016/S0960-8524(98)00114-X.
  • Ros, M., I. Rodriguez, C. Garcia, and T. Hernandez. 2010. Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments. Bioresour. Technol. 101 (18):6916–23. doi:10.1016/j.biortech.2010.03.126.
  • Sajna, K. V., R. K. Sukumaran, L. D. Gottumukkala, and A. Pandey. 2015. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour. Technol. 191:133–39. doi:10.1016/j.biortech.2015.04.126.
  • Savithri, P., and H. H. Khan. 1994. Characteristics of coconut coir pith and its utilization in agriculture. J. Plant. Crops 22 (1):1–18.
  • Stafford, S. P., D. E. Berwick, D. E. Hauhes, and D. A. Stafford. 1982. Oil degradation in hydrocarbons and oil stressed environments. In Experimental microbial ecology, ed. R. G. Burns and J. H. Sater, 591–612. London, UK: Blackwell Scientific.
  • Stelting, S., R. G. Burns, A. Sunna, G. Visnovsky, and C. Bunt 2010. Immobilization of Pseudomonas sp. strain ADP: A stable inoculants for the bioremediation of atrazine. 19th world congress of soil science, soil solutions for a changing world 1 – 6 August, Brisbane, Australia.
  • Sun, S., Q. Liu, S. Chen, W. Yu, C. Zhao, and H. Chen. 2019. Optimization for microbial degradation of petroleum hydrocarbon (TPH) by Enterobacter sp. S-1 using response surface methodology. Petrol. Sci. Technol. 37:821–28. doi:10.1080/10916466.2019.1566256.
  • Syeres, J. K., J. D. H. Williams, and T. W. Walke. 1968. The determination of total phosphorus in soils and parent materials. J. Agric. Res. 11:757–62.
  • Thomas, G. V., C. Palaniswami, S. R. Prabhu, M. Gopal, and A. Gupta. 2013. Co-composting of coconut coirpith with solid poultry manure. Curr. Sci. 104 (2):245–50.
  • Thumma, W. D. 2000. Dehydrogenase activity in soil bacteria. http://www.gardenguides.com/136033 - dehydrogenase-activity-soil-bacteria.html.
  • Varjani, S. J. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223:277–86. doi:10.1016/j.biortech.2016.10.037.
  • Varjani, S. J., D. P. Rana, A. K. Jain, S. Bateja, and V. N. Upasani. 2015. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int. Biodeterior. Biodegrad. 103:116–24. doi:10.1016/j.ibiod.2015.03.030.
  • Walkley, A., and I. Black. 1934. An examination of Degthareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 27:29–38. doi:10.1097/00010694-193401000-00003.
  • Whelen, M., F. Coulon, G. Hince, J. Ryner, R. S. McWatters, and T. Spedding. 2015. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131. doi:10.1016/j.chemosphere.2014.10.088.
  • Wu, M., W. A. Dick, W. Li, X. Wang, Q. Yang, T. Wang, L. Xu, M. Zhang, and L. Chen. 2016. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in petroleum-contaminated soil. Int. Biodeterior. Biodegrad. 107:158–64. doi:10.1016/j.ibiod.2015.11.019.
  • Xu, Y., and M. Lu. 2010. Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. J. Hazard. Mater. 183 (395–658):401. doi:10.1016/j.jhazmat.2010.07.038.
  • Zacheus, O. M., E. K. Ivainen, and T. K. Nissinen. 2000. Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34:63–70. doi:10.1016/S0043-1354(99)00113-X.
  • Zajic, J. E., and B. Supplisson. 1972. Emulsification and degradation of “Bunker C” fuel oil by microorganisms. Biotechnol. Bioenergy 14:331–43. doi:10.1002/bit.260140306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.