252
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanism of reduction and immobilization of Cr(VI) by application modified nano-zerovalent iron

, , , , &

References

  • Cho, E., J. Kim, C. W. Park, K. W. Lee, and T. S. Lee. 2018. Chemically bound Prussian blue in sodium alginate hydrogel for enhanced removal of Cs ions. J Hazard Mater 360:243–49. doi:10.1016/j.jhazmat.2018.08.031.
  • Dong, H. R., C. Zhang, J. M. Deng, Z. Jiang, L. H. Zhang, Y. J. Cheng, K. J. Hou, L. Tang, and G. M. Zeng. 2018. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res 135:1–10. doi:10.1016/j.watres.2018.02.017.
  • El-Temsah, Y. S., A. Sevcu, K. Bobcikova, M. Cernik, and E. J. Joner. 2016. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–28. doi:10.1016/j.chemosphere.2015.10.122.
  • EPD, and MLR. 2014. The environmental protection department and the ministry of land and resources issued the national soil pollution condition investigation communique. (02).
  • Fandeur, D., F. Juillot, G. Morin, L. Olivi, A. Cognigni, S. M. Webb, J. P. Ambrosi, E. Fritsch, F. Guyot, and G. E. Brown. 2009. XANES Evidence for oxidation of Cr(III)) to Cr(VI) by Mn-Oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ Sci Technol 43 (19):7384–90. doi:10.1021/es900498r.
  • Farmer, J. G., R. P. Thomas, M. C. Graham, J. S. Geelhoed, D. G. Lumsdon, and E. Paterson. 2002. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites. J Environ Monitor 4 (2):235–43. doi:10.1039/b108681m.
  • Fatisson, J., S. Ghoshal, and N. Tufenkji. 2010. Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: Roles of solution chemistry and organic molecules. Langmuir 26 (15):12832–40. doi:10.1021/la1006633.
  • Fu, L. J., A. X. Feng, J. J. Xiao, Q. Wu, Q. Y. Ye, and S. Peng. 2021. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. J Hazard Mater. 403. 123847. doi:10.1016/j.jhazmat.2020.123847.
  • Guan, X. H., H. Y. Yang, Y. K. Sun, and J. L. Qiao. 2019. Enhanced immobilization of chromium(VI) in soil using sulfidated zero-valent iron. Chemosphere 228:370–76. doi:10.1016/j.chemosphere.2019.04.132.
  • Lai, K. C. K., and I. M. C. Lo. 2008. Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ Sci Technol 42 (4):1238–44. doi:10.1021/es071572n.
  • Lan, Y. Q., B. L. Deng, C. Kim, E. C. Thornton, and H. F. Xu. 2005. Catalysis of elemental sulfur nanoparticles on Cr(VI) reduction by sulfide under anaerobic conditions. Environ Sci Technol 39 (7):2087–94. doi:10.1021/es048829r.
  • Lee, H. S., H. J. Lee, H. E. Kim, J. Y. Kweon, B. D. Lee, and C. H. Lee. 2014. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: A comparative study. J Hazard Mater 265:201–07. doi:10.1016/j.jhazmat.2013.11.066.
  • Li, H. F. 2012. Effect of hydrocolloid dressing on diabetic pressure ulcers(in Chinese). [J]. Contemporary Medicine 18 (31):14–15.
  • Li, L., M. H. Fan, R. C. Brown, J. H. Van Leeuwen, J. J. Wang, W. H. Wang, Y. H. Song, and P. Y. Zhang. 2006. Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Crit Rev Env Sci Tec 36 (5):405–31. doi:10.1080/10643380600620387.
  • Li, Z. H., S. Y. Xu, G. H. Xiao, L. M. Qian, and Y. Song. 2019. Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron. J Environ Manage 244:33–39. doi:10.1016/j.jenvman.2019.04.130.
  • Liu, T. Z., D. C. W. Tsang, and I. M. C. Lo. 2008. Cr(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: Iron dissolution and humic acid adsorption. Environ Sci Technol 42 (6):2092–98. doi:10.1021/es072059c.
  • Liu, P., X. Y. Wang, J. Ma, H. L. Liu, and P. Ning. 2019. Highly efficient immobilization of NZVI onto bio-inspired reagents functionalized polyacrylonitrile membrane for Cr(VI) reduction. Chemosphere 220:1003–13. doi:10.1016/j.chemosphere.2018.12.163.
  • Lu, H., Z. Li, S. Fu, A. Mendez, G. Gasco, and J. Paz-Ferreiro. 2015. Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging. Water Air Soil Poll 226 (5):1–11. doi:10.1007/s11270-015-2401-y.
  • Noah, N. F. M., R. N. R. Sulaiman, N. Othman, N. Jusoh, and M. B. Rosly. 2019. Extractive continuous extractor for chromium recovery: Cr(VI) reduction to Cr(III) in sustainable emulsion liquid membrane process. J Clean Prod 247 119167 doi:10.1016/j.jclepro.2019.119167.
  • Noubactep, C., S. Care, and R. Crane. 2012. Nanoscale metallic iron for environmental remediation: Prospects and limitations. Water Air Soil Poll 223 (3):1363–82. doi:10.1007/s11270-011-0951-1.
  • Papassiopi, N., K. Vaxevanidou, C. Christou, E. Karagianni, and G. S. E. Antipas. 2014. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides. J Hazard Mater 264:490–97. doi:10.1016/j.jhazmat.2013.09.058.
  • Qu, C. S., W. Shi, J. Guo, B. B. Fang, S. Wang, J. P. Giesy, and P. E. Holm. 2016. China’s soil pollution control: Choices and challenges. Environ Sci Technol 50 (24):13181–83. doi:10.1021/acs.est.6b05068.
  • Rao, A., A. Bankar, A. R. Kumar, S. Gosavi, and S. Zinjarde. 2013. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J Contam Hydrol 146:63–73. doi:10.1016/j.jconhyd.2012.12.008.
  • Reyhanitabar, A., L. Alidokht, A. R. Khataee, and S. Oustan. 2012. Application of stabilized Fe0 nanoparticles for remediation of Cr(VI)-spiked soil. Eur J Soil Sci 63 (5):724–32. doi:10.1111/j.1365-2389.2012.01447.x.
  • Ross, D. S., H. C. Hales, and A. Lanzirotti. 2013. Oxidation of added Mn(II) in soils observed by XANES spectroscopy and Cr(III) oxidation. Soil Sci Soc Am J 77 (6):1996–2003. doi:10.2136/sssaj2013.04.0151.
  • Sedlazeck, K. P., D. Vollprecht, P. Mueller, R. Mischitz, and R. Giere. 2020. Impact of an in-situ Cr(VI)-contaminated site remediation on the groundwater (vol 27, pg 14465, 2020). Environ Sci Pollut R 27 (13):14476–76. doi:10.1007/s11356-020-08185-6.
  • Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51 (7):844–51. doi:10.1021/ac50043a017.
  • Tokunaga, T. K., J. Wan, A. Lanzirotti, S. R. Sutton, M. Newville, and W. Rao. 2007. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Environ Sci Technol 41 (12):4326–31. doi:10.1021/es062874c.
  • Vidmar, J., P. Oprckal, R. Milacic, A. Mladenovic, and J. Scancar. 2018. Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS. Sci Total Environ 634:1259–68. doi:10.1016/j.scitotenv.2018.04.081.
  • Wu, L. M., L. B. Liao, G. C. Lv, and F. X. Qin. 2015. Stability and pH-Independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. J Contam Hydrol 179:1–9. doi:10.1016/j.jconhyd.2015.05.001.
  • Wu, J., X. B. Wang, and R. J. Zeng. 2017. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr(VI) removal as an example. J Hazard Mater 333:275–84. doi:10.1016/j.jhazmat.2017.03.023.
  • Xie, Y., and D. M. Cwiertny. 2010. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environ Sci Technol 44 (22):8649–55. doi:10.1021/es102451t.
  • Yoon, I. H., S. Bang, J. S. Chang, M. G. Kim, and K. W. Kim. 2011. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. J Hazard Mater 186 (1):855–62. doi:10.1016/j.jhazmat.2010.11.074.
  • Yu, Z., H. J. Li, L. M. Zhang, Z. H. Zhu, and L. Q. Yang. 2014. Enhancement of phototoxicity against human pancreatic cancer cells with photosensitizer-encapsulated amphiphilic sodium alginate derivative nanoparticles. Int J Pharmaceut 473 (1–2):501–09. doi:10.1016/j.ijpharm.2014.07.046.
  • Yuan, W. Y., W. T. Xu, Z. B. Wu, Z. W. Zhang, L. C. Wang, J. F. Bai, X. Y. Wang, Q. W. Zhang, X. F. Zhu, C. L. Zhang, et al. 2018. Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process. Chemosphere 212:540–47. doi:10.1016/j.chemosphere.2018.08.121.
  • Zhang, S. 2018. Synthesis of nanometer zero-valent iron and study on the properties and mechanism of Cr(VI) treatment. in Chinese: Doctoral dissertation, Nanchang Hangkong University.
  • Zhang, X. W., J. X. Tong, B. X. Hu, and W. S. Wei. 2018. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(VI)) in soil column. Environ Sci Pollut R 25 (1):459–68. doi:10.1007/s11356-017-0263-0.
  • Zhang, P., C. L. Zhang, L. P. Pan, W. W. Yang, C. Z. Li, G. P. Xu, F. Y. Li, and M. X. Lu. 2016. Effects of amendments and water conditions on the chemical speciation of Cd and Pb in contaminated paddy soil in a mining area. Soil Sediment Contam 25 (7):717–26. doi:10.1080/15320383.2016.1204530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.