335
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Ability of Urtica dioica L. to adsorb heavy metals (Pb, Cd, As, and Ni) from contaminated soils

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel-Shafy, H. I., and M. S. M. Mansour. 2018. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27 (4):1275–90. December 2018. doi: 10.1016/j.ejpe.2018.07.003.
  • Abdollahi, S., and A. Golchin. 2018. Biomass production and cadmium accumulation and translocation in three varieties of cabbage. Iran. J. Soil Water Res 49 (2):243–59. doi:10.22059/IJSWR.2017.223804.667601.
  • Abe, T., M. Fukami, and M. Ogasawara. 2008. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci. Plant Nutr 54 (4):566–73. doi:10.1111/j.1747-0765.2008.00288.x.
  • Ali, H., and E. Khan. 2018. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol. Environ. Chem 100 (1):6–19. doi:10.1080/02772248.2017.1413652.
  • Alloway, B. J. 2012. Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Vol. 22, 3rd ed., Springer Sci. Business Media. Environ Pollut.
  • Angle, J. S., A. J. Baker, S. N. Whiting, and R. L. Chaney. 2003. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant Soil 256 (2):325–32. doi:10.1023/A:1026137624250.
  • ASTM. 2003. Standard practice for nitric acid digestion of solid waste. (ASTM D5198–17).
  • ASTM. 2014a. Standard test method for analysis of nickel alloys by flame atomic absorption spectrometry (astm e1835-14, 2014). Soil and sediment contamination 19.
  • ASTM. 2014b. Standard test method for low concentrations of lead, cadmium, and cobalt in paint by atomic absorption spectroscopy (ASTM D3335-85a, 2014).
  • ASTM. 2017. Standard test method for manganese in gasoline by atomic absorption spectroscopy (ASTM D3831 – 12, 2017).
  • Baghaie, A., A. Khoshgoftarmanesh, and M. Afyuni. 2010. Crop effects on lead fractionation in a soil treated with lead organic and inorganic sources. J. Res. Sci. Technol 7 (3):131–38.
  • Baghaie, A., A. H. Khoshgoftarmanesh, M. Afyuni, and R. Schulin. 2011. The role of organic and inorganic fractions of cow manure and biosolids on lead sorption. Soil Sci. Plant Nutr 57 (1):11–18. doi:10.1080/00380768.2010.548309.
  • Bharti, S. K., A. Trivedi, and N. Kumar. 2018. Air pollution tolerance index of plants growing near an industrial site. Urban Climate 24:820–29. doi:10.1016/j.uclim.2017.10.007.
  • Blake, G. R., and K. H. Hartge. 1986. Bulk density. In Methods of soil analysis part 1 physical andmineralogical methods, ed. A. Klute (American Socieity of Agronomy-Soil Science), Vol. 5, 2nd ed., 363–382.
  • Carbonell, A. A., M. A. Aarabi, R. D. DeLaune, R. P. Gambrell, and W. H. Patrick Jr Jr. 1998. Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci. Total Environ 217 (3):189–99. doi:10.1016/S0048-9697(98)00195-8.
  • Chang, Z. M., and X. H. Wu. 2005. Difference comparison of three alfalfa varieties resistant to cadmium pollution. Pratacult. Sci 22 (12):20–23.
  • Chehregani, A., M. Noori, and H. L. Yazdi. 2009. Phytoremediation of heavy-metal-polluted soils: Screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol. Environ. Saf. 72 (5):1349–53. doi:10.1016/j.ecoenv.2009.02.012.
  • Cheraghi, M., B. Lorestani, H. Merrikhpour, and N. Rouniasi. 2013. Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils. Environ. Monit. Assess. 185 (2):1825–31. doi:10.1007/s10661-012-2670-5.
  • Clemente, R., D. J. Walker, and M. P. Bernal. 2005. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environ. Pollut. 138 (1):46–58. doi:10.1016/j.envpol.2005.02.019.
  • Codling, E. E., and K. L. Rutto. 2014. Stinging nettle (Urtica dioica L.) growth and mineral uptake from lead-arsenate contaminated orchard soils. J. Plant Nutr 37 (3):393–405. doi:10.1080/01904167.2013.859702.
  • Da-lin, L., H. Kai-qi, M. Jing-jing, Q. Wei-wei, W. Xiu-ping, and Z. Shu-pan. 2011. Effects of cadmium on the growth and physiological characteristics of sorghum plants. Afr. J. Biotechnol 10 (70):15770–76. doi:10.5897/AJB11.848.
  • Danielson, R. E., and P. L. Sutherland. 1986. Porosity. Methods of soil analysis: Part 1. Physic. Mineralogic. Meth 5:443–61. doi:10.2136/sssabookser5.1.2ed.c18.
  • Daria Vaverková, M. 2019. Landfill impacts on the environment-review. Waste Manag. Environ. Remediat. Geosci 9 (10):431. doi:10.3390/geosciences9100431.
  • Dinu, C., G. G. Vasile, M. Buleandra, D. E. Popa, S. Gheorghe, and E. M. Ungureanu. 2020. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. J. Soils Sediments 20 (4):2141–54. doi:10.1007/s11368-019-02550-w.
  • Dixit, R., U. B. Singh, U. B. Singh, U. B. Singh, D. Paul, D. Paul, D. Paul, B. Singh, J. Rai, and P. Sharma. 2015. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 7 (2):2189–212. doi:10.3390/su7022189.
  • DMHE (Deputy Minister of Human Environment), Water and Soil Office. 2016. Soil resource quality standards and guidelines (Evironment of Organization of Iran). 164 pp.
  • Fomenky, N. N., A. S. Tening, G. B. Chuyong, K. Mbene, G. A. Asongwe, and V. B. Che. 2018. Selected physicochemical properties and quality of soils around some rivers of Cameroon. J. Soil.Sci. Environ. Manag 9 (5):68–80. doi:10.5897/JSSEM2018.0672.
  • Fotovat, A., and E. Amiri. 2020. Comparison phytoremediation potential of Pb from contaminated soil by Vetiveria zizanioides and Brassica oleraceae. J. Soil Manag. Sustainable Prod 10 (2):1–23. doi:10.22069/EJSMS.2020.16964.1906.
  • Fuentes, D., K. B. Disante, A. Valdecantos, J. Cortina, and V. R. Vallejo. 2007. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three mediterranean forest soils. Environ. Pollut. 145 (1):316–23. doi:10.1016/j.envpol.2006.03.005.
  • Ghorbani, Y., J. P. Franzidis, and J. Petersen. 2016. Heap leaching technology—current state, innovations, and future directions: A review. Miner. Process. Extr. Metall. Rev 37 (2):73–119. doi:10.1080/08827508.2015.1115990.
  • Güleryüz, G., H. Arslan, C. Çelik, Ş. Güçer, and M. Kendall. 2008. Heavy metal content of plant species along Nilüfer stream in industrialized Bursa city, Turkey. Water Air Soil Pollut 195 (1):275–84. doi:10.1007/s11270-008-9745-5.
  • Gunes, A., D. J. Pilbeam, and A. Inal. 2009. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314 (1):211–20. doi:10.1007/s11104-008-9719-9.
  • Herath, H. M. D. A. K., D. C. Bandara, P. A. Weerasinghe, M. C. M. Iqbal, and H. C. D. Wijayawardhana. 2015. Effect of cadmium on growth parameters and plant accumulation in different rice (Oryza sativa L.) varieties in Sri Lanka. Tropical Agri. Res. 25 (4):532. doi: 10.4038/tar.v25i4.8059.
  • Ibitoye, A. A. 2006. Laboratory manual on basic soil analysis. Third Edition. Foladave, Nigeria Limited 17–21 pp. .
  • Igiri, B. E., S. I. Okoduwa, G. O. Idoko, E. P. Akabuogu, A. O. Adeyi, and I. K. Ejiogu. 2018. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J. Toxicol 2018:1–16. doi:10.1155/2018/2568038.
  • Ismail, G. S. M. 2012. Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiologiae Plantarum 34 (4):1303–11. doi:10.1007/s11738-012-0927-9.
  • Khan, A. G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol 18 (4):355–64. doi:10.1016/j.jtemb.2005.02.006.
  • Khan, A. G., C. Kuek, T. M. Chaudhry, C. S. Khoo, and W. J. Hayes. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41 (1–2):197–207. doi:10.1016/S0045-6535(99)00412-9.
  • Kim, K. W., S. Bang, Y. Zhu, A. A. Meharg, and P. Bhattacharya. 2009. Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environ. Int 35 (3):453–54. doi:10.1016/j.envint.2009.01.001.
  • Lamula, S. Q. N. 2015. Quantifying toxic contaminants in four major dump sites of Thabo Mofutsanyane district, Eastern Free State. Doctoral dissertation, University of the Free State (Qwaqwa Campus). hdl.handle.net/11660/7810.
  • Lasat, M. M., N. S. Pence, D. F. Garvin, S. D. Ebbs, and L. V. Kochian. 2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 51 (342):71–79. doi:10.1093/jexbot/51.342.71.
  • Liu, L., H. Sun, J. Chen, Y. Zhang, D. Li, and C. Li. 2014. Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton (Gossypium hirsutum L.). Plant Omics 7 (4):284–90.
  • Luo, J. S., J. Huang, D. L. Zeng, J. S. Peng, G. B. Zhang, H. L. Ma, J. M. Gong, H.-Y. Yi, Y.-L. Fu, and B. Han. 2018. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 9 (1):1–9. doi:10.1038/s41467-018-03088-0.
  • Mahmoud Soltani, S., M. M. Hanafi, S. A. Wahid, and S. M. S. Kharidah. 2015. Zinc fractionation of tropical paddy soils and their relationships with selected soil properties. Chem. Speciat. Bioavailability 27 (2):53–61. doi:10.1080/09542299.2015.1023091.
  • Marchiol, L., S. Assolari, P. Sacco, and G. Zerbi. 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 132 (1):21–27. doi:10.1016/j.envpol.2004.04.001.
  • Molas, J., and S. Baran. 2004. Relationship between the chemical form of nickel applied to the soil and its uptake and toxicity to barley plants (Hordeum vulgare L.). Geoderma 122 (2–4):247–55. doi:10.1016/j.geoderma.2004.01.011.
  • Mukherjee, A., S. B. Agrawal, and M. Agrawal. 2016. Heavy metal accumulation potential and tolerance in tree and grass species. In Plant responses to Xenobiotics, 177–210. Singapore: Springer. doi:10.1007/978-981-10-2860-1_8.
  • Nagajyoti, P. C., K. D. Lee, and T. V. M. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett 8 (3):199–216. doi:10.1007/s10311-010-0297-8.
  • Ololade, O. O., S. Mavimbela, S. A. Oke, and R. Makhadi. 2019. Impact of Leachate from Northern landfill site in bloemfontein on water and soil quality: Implications for water and food security. Sustainability 11 (15):4238. doi:10.3390/su11154238.
  • Olorunfemi, I. E., J. T. Fasinmirin, and F. F. Akinola. 2018. Soil physico-chemical properties andfertility status of long-term land use and cover changes: A case study in forest vegetative zone of Nigeria. Eurasian J. Soil Sci 7 (2):133–50. doi:10.18393/ejss.366168.
  • Olorunfemi, I., J. Fasinmirin, and A. Ojo. 2016. Modeling cation exchange capacity and soil water holding capacity from basic soil properties. Eurasian J. Soil Sci 5 (4):266–74. doi:10.18393/ejss.2016.4.266-274.
  • Ozturk, L., S. Karanlik, F. Ozkutlu, I. Cakmak, and L. V. Kochian. 2003. Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc-deficient calcareous soil. Plant Sci 164 (6):1095–101. doi:10.1016/S0168-9452(03)00118-3.
  • Parida, B. K., I. M. Chhibba, and V. K. Nayyar. 2003. Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci. Hortic. 98 (2):113–19. doi:10.1016/S0304-4238(02)00208-X.
  • Patel, K., I. Tripathi, M. Chaurasia, and K. S. Rao. 2021. Phytoremediation: Status and outlook. Pollut. Water Manag. Resour. Strategies Scarcity 67–94. doi:10.1002/9781119693635.ch4.
  • Paz-Alberto, A. M., and G. C. Sigua. 2013. Phytoremediation: A green technology to remove environmental pollutants. American Journal of Climate Change 02 (1):71–86. doi:10.4236/ajcc.2013.21008.
  • Pollard, A. J., K. D. Powell, F. A. Harper, and J. A. C. Smith. 2002. The genetic basis of metal hyperaccumulation in plants. CRC Crit. Rev. Plant Sci 21 (6):539–66. doi:10.1080/0735-260291044359.
  • Prokopy, W. R. 1995. Phosphorus in acetic acid extracts. QuikChem Method 12-115-01-1-C. Lachat Instruments, Milwaukee,WI.
  • Rahmani, H. 2008. Eflluent quality of zob-ahan company and its effects on irrigated grape fields. Environ. Sci 5 (4):135–44. https://www.sid.ir/en/journal/viewpaper.aspx?id=139519 29 6 2008.
  • Rizwan, M., S. Ali, M. Adrees, M. Ibrahim, D. C. Tsang, M. Zia-ur-rehman, Y. S. Ok, J. Rinklebe, F. M. G. Tack, and Y. S. Ok. 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105. doi:10.1016/j.chemosphere.2017.05.013.
  • Saglam, C. 2013. Heavy metal accumulation in the edible parts of some cultivated plants and media samples from a volcanic region in Southern Turkey. Ekoloji 22 (86):1–8. doi:10.5053/ekoloji.2013.861.
  • Sebastiani, L., F. Scebba, and R. Tognetti. 2004. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides× maximowiczii) and I-214 (P.× euramericana) exposed to industrial waste. Environ. Exp. Bot. 52 (1):79–88. doi:10.1016/j.envexpbot.2004.01.003.
  • Sert, E. B., M. Turkmen, and M. Cetin. 2019. Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun Highway (Hatay, Turkey). Environ. Monit. Assess. 191 (9):1–12. doi:10.1007/s10661-019-7714-7.
  • Shams, K. M., G. Tichy, A. Fischer, M. Sager, T. Peer, A. Bashar, and K. Filip. 2010. Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil 328 (1):175–89. doi:10.1007/s11104-009-0095-x.
  • Sheoran, V., A. S. Sheoran, and P. Poonia. 2009. Phytomining: A review. Miner. Eng 22 (12):1007–19. doi:10.1016/j.mineng.2009.04.001.
  • Shimada, N., and T. Ando. 1980. Role of nickel on the plant nutrition, 2: Effect of nickel on the assimilation of urea by plants. J. Sci. Soil Manure 51:487-492. .
  • Steliga, T., and D. Kluk. 2020. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicol. Environ. Saf. 194:110409. doi:10.1016/j.ecoenv.2020.110409.
  • Tawiah, R. 2018. Bioaccessibility Studies of Potential Toxic Elements (PTEs) In Medicinal Plants from Different Locations in Accra Metropolis, Ghana. Doctoral dissertation, University of Ghana. ugspace.ug.edu.gh/handle/123456789/26614.
  • Turgut, C., M. K. Pepe, and T. J. Cutright. 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut. 131 (1):147–54. doi:10.1016/j.envpol.2004.01.017.
  • Van der Ent, A., A. J. Baker, R. D. Reeves, A. J. Pollard, and H. Schat. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362 (1):319–34. doi:10.1007/s11104-012-1287-3.
  • Viktorova, J., Z. Jandova, M. Madlenakova, P. Prouzova, V. Bartunek, B. Vrchotova, T. Macek, L. Musilova, and T. Macek. 2016. Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS One 11 (12):e0167927. doi:10.1371/journal.pone.0167927.
  • Wang, G., M. Y. Su, Y. H. Chen, F. F. Lin, D. Luo, and S. F. Gao. 2006. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut. 144 (1):127–35. doi:10.1016/j.envpol.2005.12.023.
  • Weldeslassie, T., H. Naz, B. Singh, and M. Oves. 2018. Chemical contaminants for soil, air and aquatic ecosystem. In Modern age environmental problems and their remediation, 1–22. Cham: Springer. doi:10.1007/978-3-319-64501-8_1.
  • Wuytack, T., K. Wuyts, S. Van Dongen, L. Baeten, F. Kardel, K. Verheyen, and R. Samson. 2011. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L. Environ. Pollut. 159 (10):2405–11. doi:10.1016/j.envpol.2011.06.037.
  • Xiong, X., X. Liu, K. M. Iris, L. Wang, J. Zhou, X. Sun, D. C. Tsang, S. M. Shaheen, Y. S. Ok, and Z. Lin. 2019. Potentially toxic elements in solid waste streams: Fate and management approaches. Environ. Pollut. 253:680–707. doi:10.1016/j.envpol.2019.07.012.
  • Xue, Z. C., H. Y. Gao, and L. T. Zhang. 2013. Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biologia Plantarum 57 (3):587–90. doi:10.1007/s10535-013-0318-0.
  • Zhao, F. J., R. E. Hamon, E. Lombi, M. J. McLaughlin, and S. P. McGrath. 2002. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 53 (368):535–43. doi:10.1093/jexbot/53.368.535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.