154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biochar improves the adaptability of Vicia faba L in cadmium contaminated soil

, , , , , & ORCID Icon show all

References

  • Abbas, T. M., S. Rizwan, M. Z. Ali, M. F. Rehman, F. Qayyum, F. Abbas, J. R. Hannan, Y. S. Ok, and Y. Sik Ok. 2017a. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol. Environ. Saf. 140:37–47. doi:10.1016/j.ecoenv.2017.02.028.
  • Abbas, T. M., S. Rizwan, M. Ali, M. Z. Adrees, M. F. Rehman, Y. Qayyum, and G. Murtaza. 2017b. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ. Sci. Pollut. Res. doi:10.1007/s11356-017-8987-4.
  • Abbasi, G. H., J. Akhtar, M. Anwar-ul-Haq, W. Malik, S. Ali, Z. H. Chen, and G. Zhang. 2015. Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regul. 75 (1):115–22. doi:10.1007/s10725-014-9936-6.
  • Abbasi, G. H., M. Ijaz, J. Akhtar, M. Anwar-Ul-Haq, M. Jamil, S. Ali, R. Ahmad, and H. N. Khan. 2016. Profiling of anti-oxidative enzymes and lipid peroxidation in shoots of salt tolerant and salt sensitive maize hybrids under NaCl and Cd stress. Sains Malay 45:177–84.
  • Abdal, N., G. Abbas, S. A. Asad, A. A. Ghfar, G. M. Shah, M. Rizwan, S. Ali, and M. Shahbaz. 2021. Salinity mitigates cadmi-um-induced phytotoxicity in quinoa (Chenopodium quinoa Willd) by limiting the Cd uptake and improved responses to ox-idative stress: Implications for phytoremediation. Environ Geochem Health 1–15. doi:10.1007/s10653-021-01082-y.
  • Aebi, H. 1984. Catalase in vitro. Meth. Enzymol. 105:121–26. doi:10.1016/S0076-6879(84)05016-3.
  • Ahmad, P., P. Alam, T. H. Balawi, F. H. Altalayan, M. A. Ahanger, M. Ashraf. 2020. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. Chemosphere 244:125480. doi:10.1016/j.chemosphere.2019.125480.
  • Ahmad, P., V. Raja, M. Ashraf, L. Wijaya, A. Bajguz, and M. N. Alyemeni. 2021. Jasmonic acid (JA) and gibberellic acid (GA3) mitigated Cd-toxicity in chickpea plants through restricted cd uptake and oxidative stress management. Sci Rep 19768 (11):312. doi:10.1038/s41598-021-98753-8.
  • Akhtar, S. S., M. N. Andersen, and F. Liu. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agr. Water Manage 158:61–68. doi:10.1016/j.agwat.2015.04.010.
  • Akhtar, T., et al. 2017. Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environ. Sci. Pollut. Res. 24:5521–29. doi:10.1007/s11356-016-8246-0.
  • Amjad, M., M. M. Iqbal, G. Abbas, A. B. U. Farooq, M. A. Naeem, M. Imran, B. Murtaza, M. Nadeem, and S.-E. Jacobsen. 2021. Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. Environ. Geochem Health. 44: 1487–1500. https://doi.org/10.1007/s10653-021-00826-0.
  • Anjum, N. A., I. Ahmad, I. Mohmooda, M. Pachecob, A. C. Duartea, E. Pereiraa, S. Umarc, A. Ahmadc, N. A. Khand, M. Iqbalc, et al. 2012. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids. Environ. Exp. Bot. 75:307–24. doi:10.1016/j.envexpbot.2011.07.002.
  • Anwar, H., M. Shahid, N. K. Natasha Niazi, S. Khalid, T. Z. Tariq, S. Ahmad, M. Nadeem, G. Abbas, and G. Abbas. 2021. Risk assessment of potentially toxic metal(loid)s in Vigna radiata L. under wastewater and freshwater irrigation. Chemosphere 265:129124. doi:10.1016/j.chemosphere.2020.129124.
  • Azeem, F., A. Bilal, M. A. Rana, A. A. Muhammad, N. Habibullah, H. Sabir, R. Sumaira, M. Hamid, A. Usama, and A. Muhammad . 2019. Drought affects aquaporins gene expression in important pulse legume chickpea (Cicer arietinum L.). Pak. J. Bot. 51:81–88. doi:10.30848/PJB2019.
  • Bertel, C., P. Schönswetter, B. Frajman, A. Holzinger, and G. Neuner. 2017. Leaf anatomy of two reciprocally non-monophyletic mountain plants (Heliosperma spp.): Does heritable adaptation to divergent growing sites accompany the onset of speciation? Protoplasma 254 (3):1411–20. doi:10.1007/s00709-016-1032-5.
  • Bian, R., L. Li, D. Bao, J. Zheng, X. Zhang, J. Zheng, X. Liu, K. Cheng, and G. Pan. 2016. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ. Sci. Pollut. Res. 23 (10):10028–36. doi:10.1007/s11356-016-6214-3.
  • Boostani, H., M. Najafi-Ghiri, and A. Mirsoleimani. 2019. The effect of biochars application on reducing the toxic effects of nickel and growth indices of spinach (Spinacia oleracea L.) in a calcareous soil. Environ. Sci. Pollut. Res. 26: 1751–1760. https://doi.org/10.1007/s11356-018-3760-x.
  • Boughattas, I., S. Hattab, H. Boussetta, M. Banni, and E. Navarro. 2017. Impact of heavy metal contamination on oxidative stress of Eisenia andrei and bacterial community structure in Tunisian mine soil. Environ. Sci. Pollut. Res. 24 (22):18083–95. doi:10.1007/s11356-017-9449-8.
  • Boughattas, I., S. Hattab, V. Alphonse, A. Livet, S. Giusti-Miller, H. Boussetta, M. Banni, N. Bousserrhine. 2019. Use of earthworms Eisenia andrei on the bioremediation of contaminated area in north of Tunisia and microbial soil enzymes as bioindicator of change on heavy metals speciation. J. Soils Sediment 19 (1):296–309. doi:10.1007/s11368-018-2038-8.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteinedye binding. Anal. Biochem. 72 (1–2):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
  • Carrasco-Gil, S., M. Estebaranz-Yubero, D. Medel-Cuesta, R. Millan, and L. E. Hernandez. 2012. Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environ. Exp. Bot. 75:16–24. doi:10.1016/j.envexpbot.2011.08.013.
  • Chen, T., Y. X. Zhang, H. T. Wang, W. J. Lu, Z. Y. Zhou, Y. C. Zhang, and L. L. Ren. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 164:47–54. doi:10.1016/j.biortech.2014.04.048.
  • Chen, T., Z. Y. Zhou, R. Han, R. H. Meng, H. T. Wang, and W. J. Lu. 2015. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism. Chemosphere 134:286–93. doi:10.1016/j.chemosphere.2015.04.052.
  • Chen, D., D. Chen, R. Xue, J. Long, X. Lin, Y. Lin, L. Jia, R. Zeng, and Y. Song . 2019. Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. J. Hazard. Mater. 367:447–55. doi:10.1016/j.jhazmat.2018.12.111.
  • Daud, M. K., H. Quiling, M. Lie, B. Ali, and S. J. Zhu. 2015. Ultrastructural, metabolic and proteomic changes in shoots of upland cotton in response to cadmium stress. Chemosphere 120:309–20. doi:10.1016/j.chemosphere.2014.07.060.
  • De Cillis, F., B. Leoni, M. Massaro, M. Renna, and P. Santamaria. 2019. Yield and quality of faba bean (Vicia faba L. var. major) genotypes as a vegetable for fresh consumption: a comparison between Italian landraces and commercial varieties. Agric. 9:253. doi:10.3390/agriculture9120253.
  • Derakhshan Nejad, Z., M. C. Jung, and K.-H. Kim. 2017. The effects of biochar and inorganic amendments. Environmental Geochemistry and Health 40 (3):927–53. doi:10.1007/s10653-017-9964-z.
  • Dewez, D., O. Didur, J. Vincent-Héroux, and R. Popovic. 2008. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus. Environ. Pollut. 151 (1):93–100. doi:10.1016/j.envpol.2007.03.002.
  • Dixit, V., V. Pandey, and R. Shyam. 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad)1. J. Exp. Bot 52 (358):1101–09. doi:10.1093/jexbot/52.358.1101.
  • Ekinci, M., M. Turan, and E. Yildirim. 2022. Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity, alleviating the oxidative stress and abscisic acid content in cabbage seedlings . Turk J. Agric .For. 46:28–37. http://journals.tubitak.gov.tr/agriculture/.
  • EL. Kribi-Boukhris, S., I. Boughattas, N. Zitouni, S. Helaoui, V. Sappin-Didier, C. CecileCoriou, S. Bussiere, and M. Banni. 2020. Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites. Environ. Pollut. 265:114831. doi:10.1016/j.envpol.2020.114831.
  • Gichner, T. 2003. DNA damage induced by indirect and direct acting mutagens in catalase-deficient transgenic tobacco. Cellular and acellular comet assays. Mutat. Res. 535 (2):187–93. doi:10.1016/S1383-5718(02)00320-0.
  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 (12):909–30. doi:10.1016/j.plaphy.2010.08.016.
  • Habig, H. W., J. Michael, M. J. Pabst, B. William, and W. J. Jakoby. 1974. Glutathione-S-Transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249 (22):7130–39. doi:10.1016/S0021-9258(19)42083-8.
  • Hafeez, F., M. Rizwan, M. Saqib, T. Yasmeen, S. Ali, T. Abbas, M. Zia-ur-Rehman, and M. F. Qayyum. 2019. Residual effect of biochar on growth, antioxidant defence and cadmium (cd) accumulation in rice in a cd contaminated saline soil Pak. J. Agri. Sci. 56 (1):197–204. doi:10.21162/PAKJAS/19.7546.
  • Halušková, L. U., K. Valentovičová, J. Huttová, I. Mistrík, and L. Tamás. 2009. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol. Biochem. 47 (11–12):1069–74. doi:10.1016/j.plaphy.2009.08.003.
  • Hattab, S., A. Hedheli, M. Banni, H. Boussetta, and M. Herrero. 2010. Effects of cadmium and copper on pollen germination and fruit set in pea (Pisum sativum L.). Sci. Hortic. 125 (4):551–55. doi:10.1016/j.scienta.2010.05.031.
  • Hattab, S., S. Hattab, H. Boussetta, and M. Banni. 2014. Influence of nitrate fertilization on Cd uptake and oxidative stress parameters in alfalfa plants cultivated in presence of Cd. J. Soil Sci. Plant Nutr. 14 (1):89–99. doi:10.4067/S0718-95162014005000007.
  • Helaoui, S., I. Boughattas, S. Hattab, M. Mkhinini, and M. Banni. 2020. Effects of nickel on growth and the reproductive organs of Vicia faba. Plants Brazilian J. Biological. Sci. 7 (17):305–17. doi:10.21472/bjbs(2020)071706.
  • Hina, K., M. Abbas, Q. Hussain, M. Arshad, S. Ali, and M. Rizwan. 2019. Investigation into arsenic retention in arid contaminated soils with biochar application. Arab J. Geosci. 12 (22):671. doi:10.1007/s12517-019-4865-3.
  • Iannelli, M. A., F. Pietrini, L. Fiore, L. Petrilli, and A. Massacci. 2002. Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol. Biochem. 40 (11):977–82. doi:10.1016/S0981-9428(02)01455-9.
  • Ibrahim, M. Z., S. M. Ghazi, Z. A. Shedeed, and M. N. Doaa. 2018. Biochar mitigates cadmium stress on alfalfa seeds during germination. Int. J. Prog Sci. Technol. 6:251–61.
  • Iqbal, M. 2016. Vicia faba bioassay for environmental toxicity monitoring: a review. Chemosphere 144:785–802. doi:10.1016/j.chemosphere.2015.09.048.
  • Jia, W., B. Wang, C. Wang, and H. Sun. 2017. Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J. Environ. Chem. Eng. 5 (3):2107–14. doi:10.1016/j.jece.2017.04.015.
  • Jin, Y., D. O’Connor, Y. S. Ok, D. C. W. Tsang, A. Liu, and D. Hou. 2019. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 124:320–28. doi:10.1016/j.envint.2019.01.024.
  • Kabata-Pendias, A. 2001. Trace elements in soils and plants. Boca Raton, FL, USA: CRC Press.
  • Khan, W. D., P. M. A. Ramzani, S. Anjum, F. Abbas, M. Iqbal, A. Yasar, M. Z. Ihsan, M. N. Anwar, M. Baqar, H. M. Tauqeer, et al. 2017. Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization in soil and nutritional quality of spinach. Chemosphere 185:1144–56. doi:10.1016/j.chemosphere.2017.07.097.
  • Kumar, N., R. Kumar, and K. Kishore. 2013. Onosma L.: A review of phytochemistry and ethnopharmacology. Pharm Rev 14 (7):140–52. doi:10.4103/0973-7847.120513.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (5259):680–85. doi:10.1038/227680a0.
  • Lakea, L., D. E. Godoy-Kutcharttb, D. F. Calderinib, A. Verrell, and V. O. Sadrasa. 2019. Yield determination and the critical period of faba bean (Vicia faba L.). Field Crops Res. 241:107575. doi:10.1016/j.fcr.2019.107575.
  • Lehmann, J. 2007. A handful of carbon. Nature 447 (7141):143–44. doi:10.1038/447143a.
  • Lehmann, J., and S. Joseph, Ed. 2015. Biochar for Environmental Management. London: Routledge. doi:10.4324/9780203762264.
  • Li, H. B., X. L. Dong, E. B. da Silva, L. M. de Oliveira, Y. S. Chen, and L. N. Q. Ma. 2017a. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178:466–78. doi:10.1016/j.chemosphere.2017.03.072.
  • Li, L., S. Ai, Y. Li, Y. H. Wang, and M. D. Tang. 2017b. Exogenous silicon mediates alleviation of cadmium stress by promoting photosynthetic activity and activities of antioxidative enzymes in rice. J. Plant Growth Regul. 37:1–10.
  • Li, L., C. Zhu, X. Liu, F. Li, H. Li, and J. Ye. 2018. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability. Environ. Sci. Pollut. Res. 25 (34):34091–102. doi:10.1007/s11356-018-3021-z.
  • Lu, G., W. Tan, and G. Li. 2019. Effects of carbendazim on catalase activity and related mechanism. Environ. SciPollut Res. 1–6. doi:10.1007/s11356-019-06125-7.
  • Mansoor, S., N. Kour, S. Manhas, S. Zahid, O. A. Wani, V. Sharma, L. Wijaya, M. N. Alyemeni, A. A. Alsahli, H. A. El-Serehy, et al. 2020. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere 271. doi:10.1016/j.chemosphere.2020.129458.
  • Marchand, L., C. Pelosi, M. R. González-Centeno, A. Maillard, A. Ourry, W. Galland, P. L. Teissedre, J. J. Bessoule, S. Mongrand, A. MorvanBertrand, et al. 2016. Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol. Chemosphere 156:150–62. doi:10.1016/j.chemosphere.2016.04.129.
  • Medyńska-Juraszek, A., and I. Ćwieląg-Piasecka. 2020. Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. Pol. J. Environ. Stud. 29 (2):1749–57. doi:10.15244/pjoes/108928.
  • Mehmood, S., W. Ahmed, M. Ikram, M. Muhammad Imtiaz, S. Mahmood, S. Tu, and D. Chen. 2021. Chitosan modified biochar, increases soybean (L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants 9 (9):1173. doi:10.3390/plants9091173.
  • Mkhinini, M., I. Boughattas, V. Alphonse, A. Livet, N. Bousserrhine, and M. Banni. 2019. Effect of Treated Wastewater Irrigation in East Central Region of Tunisia (Monastir Governorate) on the Biochemical and Transcriptomic Response of Earthworms Eisenia Andrei. https://doi.org/10.1016/j.scitotenv.2018.07.449
  • Mkhinini, M., S. Helaoui, I. Boughattas, S. Amemou, and M. Banni. 2020. Earthworm Eisenia andrei modulate oxidative stress in bean plants Vicia faba irrigated with treated waste water. Ecotoxicology 0963:9292. doi:10.1007/s10646-020-02243-y.
  • Mohan, D., K. Abhishek, A. Sarswat, M. Patel, P. Singh, and C. U. Pittman. 2018. Biochar production and applications in soil fertility and carbon sequestration–a sustainable solution to crop-residue burning in India. RSC Adv 8 (1):508–20. doi:10.1039/C7RA10353K.
  • Naikoo, M. I., F. Raghib, M. I. Dar, F. A. Fareed Ahmad Khan, K. Kamel Hessini, and P. Ahmad. 2021. Uptake, accumulation and elimination of cadmium in a soil - Faba bean (Vicia faba) - Aphid (Aphis fabae) - Ladybird (Coccinella transversalis) food chain. Chemosphere 279:130522. doi:10.1016/j.chemosphere.
  • Namgay, T., B. Singh, and B. P. Singh. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res. 48 (7):638–47. doi:10.1071/SR10049.
  • Nie, C. R., X. Yang, N. K. Niazi, X. Y. Xu, Y. H. Wen, J. Rinklebe, Y. S. Ok, S. Xu, and H. L. Wang. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere 200:274–81. doi:10.1016/j.chemosphere.2018.02.134.
  • Ortega-Villasante, C., R. Rellan-Alvarez, F. F. Del Campo, R. O. Carpena-Ruiz, and L. E. Hernandez. 2005. Cellular damage induced by cadmium and mercury in Medicago sativa. J. Exp. Bot 56 (418):2239–51. doi:10.1093/jxb/eri223.
  • Oukarroum, A., W. Zaidi, M. Samadani, and D. Dewez. 2017. Toxicity of nickel oxide nanoparticles on a freshwater green algal strain of Chlorella vulgaris. Biomed. Res. Int. 2017:1–8. doi:10.1155/2017/9528180.
  • Pandit, N. R., J. M. Sarah, E. Hale, V. Martinsen, H. P. Hans Peter Schmidt, and G. Cornelissen . 2018. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci. Total Environ. 625:1380–89. doi:10.1016/j.scitotenv.2018.01.022.
  • Paradiso, A., R. Berardino, M. C. de Pinto, L. Sanita Di Toppi, M. M. Storelli, F. Tommasi, and L. G. Gara. 2008. Increase in ascorbate glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 49 (3):362–74. doi:10.1093/pcp/pcn013.
  • Rehman, S., G. Abbas, M. Shahid, M. Saqib, A. B. U. Farooq, M. Hussain, A. Farooq, M. Amjad, M. A. Naeem, and A. Farooq. 2019. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stresss. Ecotoxicol Environ. 171:146–53. doi:10.1016/j.ecoenv.2018.12.077.
  • Rellán-Álvarez, R., C. Ortega-Villasante, A. Álvarez-Fernández, F. F. Del Campo, and L. E. Hernández. 2006. Stress responses of Zea mays to cadmium and mercury. Plant Soil 279 (1–2):41–50. doi:10.1007/s11104-005-3900-1.
  • Rizwan, M., S. Ali, M. Adrees, H. Rizvi, M. Zia-Ur-Rehman, F. Hannan, M. F. Qayyum, F. Hafeez, and S. O. Yong. 2016a. Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: A critical review. Environ. Sci. Poll. Res. 23:1–21.
  • Rizwan, M. S., S. Ali, M. Qayyum, M. Z. Ibrahim, M. Rehman, T. Abbas YS, and Y. S. Ok. 2016b. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. environmental Science and Pollution Research 23 (3):2230–48. doi:10.1007/s11356-015-5697-7.
  • Rizwan, M., S. Ali, T. Abbas, M. Adrees, M. Zia-ur-Rehman, M. Ibrahim, F. Abbas, M. F. Qayyum, and R. Nawaz. 2018. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Environ. Manage 206:676–83.
  • Saifullah, S., S. Dahlawi, A. Naeem, Z. Renegl, and R. Naidu. 2018. Biochar application for the remediation of salt-affected soils: Opportunities and Challenges. Sci. Total Environ. 625:320–35. doi:10.1016/j.scitotenv.2017.12.257.
  • Shabbir, A., G. Abbas, S. A. Asad, H. Razzaq, M. A. Haq, and M. Amjad. 2020. Effects of arsenite on physiological, biochemical and grain yield attributes of quinoa (Chenopodium quinoa Willd.): Implications for phytoremediation and health risk assessment. Int. J. Phytoremediation. doi:10.1080/15226514.2020.1865266.
  • Shabbir, A., M. Saqib, G. Murtaza, G. Abbas, M. Imran, M. Rizwan, M. A. Naeem, S. Ali, and H. M. R. Javeed. 2021. Biochar mitigates arsenic-induced human health risks and phytotoxicity in quinoa under saline conditions by modulating ionic and oxidative stress responses. Environ. Pollut. 287–117348. doi:10.1016/j.envpol.2021.117348.
  • Shahid, M., A. B. U. Farooq, F. Rabbani, S. Khalid, C. Dumat, J. Kandasamy, and S. Vigneswaran. 2019. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere 233:245–125605. doi:10.1016/j.chemosphere.2019.125605.
  • Shen, Z. T., A. M. Som, F. Wang, F. Jin, O. McMillan, and A. Al Tabba. 2016. Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Sci. Total Environ. 542:771–76. doi:10.1016/j.scitotenv.2015.10.057.
  • Sobrino-Plata, J., C. Ortega-Villasante, M. Laura Flores-Cáceres, C. Escobar, F. Del Campo, and L. E. Hernández. 2009. Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77 (7):946–54. doi:10.1016/j.chemosphere.2009.08.007.
  • Sun, Z., A. Sänger, P. Rebensburg, P. Lentzsch, S. Wirth, M. Kaupenjohann, and A. Meyer-Aurich. 2017. Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam. Sci. Total Environ. 578:557–65. doi:10.1016/j.scitotenv.2016.10.230.
  • Sun, C., Z. Zhang, H. Cao, M. Xu, and L. Xu. 2019. Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere 219:538–45. doi:10.1016/j.chemosphere.2018.12.040.
  • Suzuki, N., S. Koussevitzky, R. Mittler, and G. Miller. 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35 (2):259–70. doi:10.1111/j.1365-3040.2011.02336.x.
  • Szollosi, R., I. Varga, L. Erdei, and E. Mihalik. 2009. Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotoxicol. Environ. Saf. 72 (5):1337–42. doi:10.1016/j.ecoenv.2009.04.005.
  • Tang, J., W. Zhu, R. Kookana, and R. Arata Katayama. 2013. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 6 (6):653–59. doi:10.1016/j.jbiosc.2013.05.035.
  • Thioulouse, J, and S. Dray. 2007. Interactive multivariate data analysis in R with the ade4 and ade4TkGUI Packages. J. Stat. Softw. 22: 1–14. https://org/citeulike-article-id:3973175
  • Turan, V., S. A. Khan, M. Iqbal, P. M. A. Ramzani, M. Fatima, and M. Fatima. 2018. Promoting the productivity and quality of Brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 161:409–19. doi:10.1016/j.ecoenv.2018.05.082.
  • Velki, M., and B. K. Hackenberger. 2013. Biomarker responses in earthworm Eisenia andrei exposed to pirimiphos-methyl and deltamethrin using different toxicity tests. Chemosphere 90 (3):1216–26. doi:10.1016/j.chemosphere.2012.09.051.
  • Wang, Y., Y. Liu, W. Zhan, K. Zheng, J. Wang, C. Zheng, and R. Chen. 2020. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci. Total Environ. 729:139060. doi:10.1016/j.scitotenv.2020.139060.
  • Wu, X., Z. B. Zhu, J. H. Chen, Y. F. Huang, Z. I. LiLiu, J. W. Zou, H. Y. Chen, N. N. Su, and J. Cui. 2019. Transcriptome analysis revealed pivotal transporters involved in the reduction of cadmium accumulation in pakchoi (Brassica chinensis L.) byexogenous hydrogen-rich water. Chemosphere 216:684–97. doi:10.1016/j.chemosphere.2018.10.152.
  • Xiao, X., B. Chen, and L. Zhu. 2014. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ. Sci. Technol. 48 (6):3411–19. doi:10.1021/es405676h.
  • Xiao, X., B. L. Chen, Z. M. Chen, L. Z. Zhu, and J. L. Schnoor. 2018. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environ. Sci. Technol. 52 (9):5027–47. doi:10.1021/acs.est.7b064.87.
  • Xu, C. Y., S. Hosseini-Bai, Y. Hao, R. C. N. Rachaputi, H. Wang, Z. Xu, H. Wallace. 2015. Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ. Sci. Pollut. Res. 22(8):6112–25. doi:10.1007/s11356-014-3820-9.
  • Yaashikaa, P. R., P. SenthilKumar, S. Jeevanantham, and R. Saravanan. 2022. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 301:119035. doi:10.1016/j.envpol.2022.119035.
  • Yan, F., W. K. Yang, X. Y. Li, T. T. Lin, Y. N. Lun, F. Lin, S. W. Lv, G. L. Yan, J.-Q. Liu, J.-C. Shen, et al. 2008. A trifunctional enzyme with glutathione S-transferase, glutathione peroxidase and superoxide dismutase activity. Biochim. Biophys. Acta. 1780(6):869–72. doi:10.1016/j.bbagen.2008.03.003.
  • Yang, Z. P., J. M. Hao, Y. S. Bu, Z. Q. Gao, and G. Y. Miao. 2011. Effects of Cd stress on Cd accumulation in organs and rhizospheric soil characteristics with five plants. J. Soil Water Conserv. 25:186–92.
  • Yannarelli, G. G., A. J. Fernandez-Alvarez, D. M. Santa-Cruz, and M. L. Tomaro. 2007. Glutathione reductase activity and isoforms In shoots and roots of wheat plants subjected to cadmium stress. Phytochemestry 68 (4):505–12. doi:10.1016/j.phytochem.2006.11.016.
  • Yi, M., H. Yi, H. Li, and L. Wu. 2010. Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environ. Toxic: An Inter. J. 25 (2):124–29.
  • Yi, Y., Z. Yang, and S. Zhang. 2011. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 159 (10):2575–85. doi:10.1016/j.envpol.2011.06.011.
  • Younis, U., S. A. Malik, M. Rizwan, M. F. Qayyum, Y. S. Ok, M. S. Raza-Shah, R. A. Rehman, and N. Ahmad. 2016. Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ. Sci. Pollut. Res. 23 (21):21385–94. doi:10.1007/s11356-016-7344-3.
  • Yousaf, B., G. Liu, R. Wang, M. Z. Rehman, M. S. Rizwan, M. Imtiaz, G. Murtaza, and A. Shakoor. 2016. Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environ. Earth Sci. 75 (5):1–10. doi:10.1007/s12665-016-5285-2.
  • Zhang, C., P. W. Sale, and C. Tang. 2016. Cadmium uptake by Carpobrotus rossii (Haw.) Schwantes under different saline conditions. Environ. Sci. Pollut. Res. 23 (13):13480–88. doi:10.1007/s11356-016-6508-5.
  • Zhao, C., D. Ye, D. Wei, and B. L. D. Chen. 1994. Tertiary in oil and gas province of China III. Oil Industry Press Beijing 1–124.
  • Zhu, X., B. Chen, L. Zhu, and B. Xing. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 227:98–115. doi:10.1016/j.envpol.2017.04.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.