314
Views
0
CrossRef citations to date
0
Altmetric
Review

Impact of nanomaterials accumulation on the organic carbon associated enzymatic activities in soil

, , &

References

  • https://www.mordorintelligence.com/industry-reports/nanometals-market
  • https://inkwoodresearch.com/reports/nanomaterials-market/
  • Acharya, A., and P. K. Pal. 2020. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact 19:100232. doi:10.1016/j.impact.2020.100232.
  • Adetunji, A. T., F. B. Lewu, R. Mulidzi, and B. Ncube. 2017. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil. Sci. Plant. Nutr. 17:794–807. doi:10.4067/S0718-95162017000300018.
  • Ahmed, B., A. Rizvi, K. Ali, J. Lee, A. Zaidi, M.S. Khan and J. Musarrat, et al. 2021. Nanoparticles in the soil–plant system: A review. Environ. Chem. Lett. 19:1–65. doi:10.1007/s10311-020-01129-z.
  • Ajwa, H. A., and M. A. Tabatabai. 1994. Decomposition of different organic materials in soils. Biol. Fertil. Soils 18 (3):175–82. doi:10.1007/BF00647664.
  • Asadishad, B., S. Chahal, A. Akbari, V. Cianciarelli, M. Azodi, S. Ghoshal, N. Tufenkji, et al. 2018. Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52 (4):1908–18. doi:10.1021/acs.est.7b05389.
  • Awasthi, M. K., A. K. Pandey, P. S. Bundela, and J. Khan. 2015. Co-Composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresour. Technol. 182:200–07. doi:10.1016/j.biortech.2015.01.104.
  • Awet, T., Y. Kohl, F. Meier, S. Straskraba, A.-L. Grün, T. Ruf, C. Jost, R. Drexel, E. Tunc, C. Emmerling, et al. 2018. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. 30:1–10. doi:10.1186/s12302-018-0140-6.
  • Ben-Moshe, T., S. Frenk, I. Dror, D. Minz, and B. Berkowitz . 2013. Effects of metal oxide nanoparticles on soil properties. Chemosphere 90 (2):640–46. doi:10.1016/j.chemosphere.2012.09.018.
  • Brookes, P. C., Y. Chen, L. Chen, G. Qiu, Y. Luo, and J. Xu . 2017. Is the rate of mineralization of soil organic carbon under microbiological control? Soil Biol. Biochem. 112:127–39. doi:10.1016/j.soilbio.2017.05.003.
  • Brown, M. E., and M. C. Chang. 2014. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19:1–7. doi:10.1016/j.cbpa.2013.11.015.
  • Bruni, A., F. G. Serra, V. Gallo, A. Deregibus, and T. Castroflorio. 2021. The 50 most-cited articles on clear aligner treatment: A bibliometric and visualized analysis. Am. J. Orthodont. Dentofacial Orthoped. 159 (4):e343–e362. doi:10.1016/j.ajodo.2020.11.029.
  • Burke, D. J., M. N. Weintraub, C. R. Hewins, and S. Kalisz. 2011. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol. Biochem. 43 (4):795–803. doi:10.1016/j.soilbio.2010.12.014.
  • Burton, A. J., K. S. Pregitzer, J. N. Crawford, G. P. Zogg, and D. R. Zak. 2004. Simulated chronic NO 3 − deposition reduces soil respiration in northern hardwood forests. Glob. Change. Biol. 10:1080–91. doi:10.1111/j.1365-2486.2004.00737.x.
  • Caldwell, B. A. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 49:637–44. doi:10.1016/j.pedobi.2005.06.003.
  • Choinowski, T., W. Blodig, K. H. Winterhalter, and K. Piontek. 1999. The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: A novel radical site formed during the redox cycle. J. Mol. Biol. 286 (3):809–27. doi:10.1006/jmbi.1998.2507.
  • Chung, H., Y. Son, T. K. Yoon, S. Kim, and W. Kim . 2011. The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol. Environ. Saf. 74:569–75. doi:10.1016/j.ecoenv.2011.01.004.
  • Conant, R. T., M. G. Ryan, G. I. Ågren, H. E. Birge, E. A. Davidson, P. E. Eliasson, S. E. Evans, S. D. Frey, C. P. Giardina, F. M. Hopkins, et al. 2011. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Glob. Change. Biol. 17:3392–404. doi:10.1111/j.1365-2486.2011.02496.x.
  • da Silva Coelho-Moreira, J., G. M. Maciel, R. Castoldi, S. da Silva Mariano, F. D. Inácio, A. Bracht, and R. M. Peralta. 2013. Involvement of lignin-modifying enzymes in the degradation of herbicides. Herbicides-Advances in Research 165.
  • Datta, R., A. Kelkar, D. Baraniya, A. Molaei, A. Moulick, R. S. Meena, and P. Formanek. 2017. Enzymatic degradation of lignin in soil: A review. Sustainability 9 (7):1163. doi:10.3390/su9071163.
  • Dick, R., and E. Kandeler. 2005. Encyclopedia of Soils in the Environment 448–456. 978-0-12-348530-4. doi:10.1016/B0-12-348530-4/00146-6
  • Du, J., Y. Zhang, L. Liu, M. Qv, Y. Lv, Y. Yin, Y. Zhou, M. Cui, Y. Zhu, H. Zhang, et al. 2017. Can visible light impact litter decomposition under pollution of ZnO nanoparticles? Chemosphere 187:368–75. doi:10.1016/j.chemosphere.2017.08.128.
  • Frey, S. D., M. Knorr, J. L. Parrent, and R. T. Simpson. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196:159–71. doi:10.1016/j.foreco.2004.03.018.
  • Gałązka, A., and K. Furtak. 2019. Functional microbial diversity in context to agriculture. In Microbial diversity in the genomic era, 347–58, 978-0-12-814849-5. Elsevier. doi:10.1016/C2017-0-01759-7.
  • Ganaie, S. A., and J. A. Wani. 2021. Bibliometric analysis and visualization of Nanotechnology Research Field. Collnet 15 (2):445–67.
  • Garcıa-Gil, J. C., C. Plaza, P. Soler-Rovira, and A. Polo. 2000. Long-Term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32 (13):1907–13. doi:10.1016/S0038-0717(00)00165-6.
  • Geisseler, D., and W. R. Horwath. 2008. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil. Biol. Biochem. 40:3040–48. doi:10.1016/j.soilbio.2008.09.001.
  • Gottschalk, F., T. Sonderer, R. W. Scholz, and B. Nowack. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43:9216–22. doi:10.1021/es9015553.
  • Gottschalk, F., T. Sun, and B. Nowack. 2013. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 181:287–300. doi:10.1016/j.envpol.2013.06.003.
  • Goyal, S., S. K. Dhull, and K. K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol. 96 (14):1584–91. doi:10.1016/j.biortech.2004.12.012.
  • Hänsch, M., and C. Emmerling. 2010. Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J. Plant. Nutr. Soil Sci. 173:554–58. doi:10.1002/jpln.200900358.
  • Hansen, S. F., O. F. H. Hansen, and M. B. Nielsen. 2020. Advances and challenges towards consumerization of nanomaterials. Nat. Nanotechnol. 15:964–65. doi:10.1038/s41565-020-00819-7.
  • He, F., H. Wang, Q. Chen, B. Yang, Y. Gao, and L. Wang . 2015. Short-term response of soil enzyme activity and soil respiration to repeated carbon nanotubes exposure. Soil Sediment Contam. Int. J. 24:250–61. doi:10.1080/15320383.2015.948611.
  • Igalavithana, A. D., S. S. Lee, N. K. Niazi, Y.-H. Lee, K. Kim, J.-H. Park, D. Moon, and Y. S. Ok . 2017. Assessment of soil health in urban agriculture: Soil enzymes and microbial properties. Sustainability 9:310. doi:10.3390/su9020310.
  • Järvan, M., L. Edesi, A. Adamson, and T. Võsa. 2014. Soil microbial communities and dehydrogenase activity depending on farming systems. Plant. Soil Environ. 60:459–63. doi:10.17221/410/2014-PSE.
  • Javed, Z., K. Dashora, M. Mishra, V. D. Fasake, and A. Srivastva . 2019. Effect of accumulation of nanoparticles in soil health—A concern on future. Front. Nanosci. Nanotechnol. 5:1–9. doi:10.15761/FNN.1000181.
  • Jiang, H., H. Wang, and B. Yang . 2020. Effects of ZnO nanoparticles on microbial biomass and enzyme activity in soils containing cellulose and lignin. 2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020), 194, 2020. E3S Web of Conferences. 05028. doi:10.1051/e3sconf/202019405028.
  • Kaczyńska, G., A. Borowik, and J. Wyszkowska. 2015. Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut. 226:1–11. doi:10.1007/s11270-015-2642-9.
  • Keller, A. A., A. S. Adeleye, J. R. Conway, K. L. Garner, L. Zhao, G. N. Cherr, J. Hong, J. L. Gardea-Torresdey, H. A. Godwin, S. Hanna, et al. 2017. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40. doi:10.1016/j.impact.2017.05.003.
  • Kellner, H., M. Vandenbol, and P. Wang. 2010. Fungi unearthed: Transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PloS One 5:e10971. doi:10.1371/journal.pone.0010971.
  • Khanna, K., S. K. Kohli, N. Handa, H. Kaur, P. Ohri, R. Bhardwaj, P. Ahmad, J. Rinklebe, and P. Ahmad. 2021. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicol. Environ. Safety 222:112459. doi:10.1016/j.ecoenv.2021.112459.
  • Kim, S., J. Kim, and I. Lee. 2011. Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem. Ecol. 27:49–55. doi:10.1080/02757540.2010.529074.
  • Kwak, J. I., S.-J. Yoon, and Y.-J. An. 2016. Long-term effects of ZnO nanoparticles on exoenzyme activities in planted soils. Environ. Eng. Res. 22:224–29. doi:10.4491/eer.2016.103.
  • Lebedev, S. V., I. A. Gavrish, L. V. Galaktionova, A. M. Korotkova, and E. A. Sizova . 2019. Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment. Environ. Geochem. Health 41:769–82. doi:10.1007/s10653-018-0171-3.
  • Li, Z., E. Sahle-Demessie, A. A. Hassan, J. G. Pressman, G. A. Sorial, and C. Han . 2017. The transport and deposition of CeO2 nanoparticles in the presence of natural organic matter extracted from the Ohio river. Sci. Total Environ. 609:1616. doi:10.1016/j.scitotenv.2017.07.154.
  • Liang, C., J. P. Schimel, and J. D. Jastrow. 2017. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2:1–6. doi:10.1038/nmicrobiol.2017.105.
  • Malakar, A., S. R. Kanel, C. Ray, D. D. Snow, and M. N. Nadagouda . 2021. Nanomaterials in the environment, human exposure pathway, and health effects: A review. Sci. Total. Environ. 759:143470. doi:10.1016/j.scitotenv.2020.143470.
  • Masrahi, A., A. R. VandeVoort, and Y. Arai. 2014. Effects of silver nanoparticle on soil-nitrification processes. Arch. Environ. Contam. Toxicol. 66:504–13. doi:10.1007/s00244-013-9994-1.
  • Matsuoka, M., I. Mendes, and M. Loureiro. 2003. Microbial biomass and enzyme activities in soils under native vegetation and annual and perennial cropping systems in the region of Primavera do Leste (MT). Rev. Bras. Cienc. Solo 27:425–33. doi:10.1590/S0100-06832003000300004.
  • McGee, C., S. Storey, N. Clipson, and E. Doyle. 2017. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology 26:449–58. doi:10.1007/s10646-017-1776-5.
  • Mishra, M., K. Dashora, A. Srivastava, V. D. Fasake, and R. H. Nag . 2019. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol. Environ. Saf. 171:677–82. doi:10.1016/j.ecoenv.2018.12.085.
  • Mondini, C., F. Fornasier, and T. Sinicco. 2004. Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol. Biochem. 36 (10):1587–94. doi:10.1016/j.soilbio.2004.07.008.
  • Moreira, P. R., Almeida-Vara, E., Malcata, F. X., Duarte, J. C. 2007. Lignin transformation by a versatile peroxidase from a novel Bjerkandera sp. strain. International Biodeterioration & Biodegradation 59 (3):234–38. doi:10.1016/j.ibiod.2006.11.002.
  • Nannipieri, P., E. Kandeler, and P. Ruggiero. 2002. Enzyme activities and Microbiological and Biochemical Processes in Soil. Enzymes Environ. New York: Marcel Dekker, Inc., 1–33.
  • Ndiaye, E., J. Sandeno, D. McGrath, and R. Dick. 2000. Integrative biological indicators for detecting change in soil quality. Am. J. Altern. Agric. 15:26–36. doi:10.1017/S0889189300008432.
  • Olsson, P., S. Linder, R. Giesler, and P. Högberg. 2005. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob. Change. Biol. 11:1745–53. doi:10.1111/j.1365-2486.2005.001033.x.
  • Percival, H. J., R. L. Parfitt, and N. A. Scott. 2000. Factors controlling soil carbon levels in New Zealand grasslands is clay content important? Soil Sci. Soc. Am. J. 64:1623–30. doi:10.2136/sssaj2000.6451623x.
  • Perez, J., and T. W. Jeffries. 1990. Mineralization of 14C-ring-labeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase. Appl. Environ. Microbiol. 56 (6):1806–12. doi:10.1128/aem.56.6.1806-1812.1990.
  • Piotrowska, A., and J. Koper. 2010. Soil beta-glucosidase activity under winter wheat cultivated in crop rotation systems depleting and enriching the soil in organic matter. J. Elem. 15:593–600.
  • Prasad, R., A. Bhattacharyya, and Q. D. Nguyen. 2017. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 8:1014. doi:10.3389/fmicb.2017.01014.
  • Rashid, M. I., T. Shahzad, M. Shahid, M. Imran, J. Dhavamani, I. M. I. Ismail, J. M. Basahi, and T. Almeelbi . 2017. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci. Rep. 7:1–11. doi:10.1038/srep41965.
  • Samarajeewa, A., J. Velicogna, D. Schwertfeger, J. I. Princz, R. M. Subasinghe, R. P. Scroggins, and L. A. Beaudette . 2020. Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil. Sci. Total. Environ. 763:143037. doi:10.1016/j.scitotenv.2020.143037.
  • Shin, Y.-J., J. I. Kwak, and Y.-J. An. 2012. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–29. doi:10.1016/j.chemosphere.2012.03.010.
  • Simonin, M., J. M. Martins, X. Le Roux, G. Uzu, A. Calas, and A. Richaume . 2017. Toxicity of TiO 2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships. Nanotoxicology 11:247–55. doi:10.1080/17435390.2017.1290845.
  • Singh, H., A. Sharma, S. K. Bhardwaj, S. K. Arya, N. Bhardwaj, and M. Khatri . 2021. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process. Impacts 23:213–39. doi:10.1039/D0EM00404A.
  • Stemmer, M., M. H. Gerzabek, and E. Kandeler. 1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol. Biochem. 31 (1):9–17. doi:10.1016/S0038-0717(98)00083-2.
  • Sun, W., F. Dou, C. Li, X. Ma, and L. Q. Ma . 2021. Impacts of metallic nanoparticles and transformed products on soil health. Crit. Rev. Environ. Sci. Technol. 51:973–1002. doi:10.1080/10643389.2020.1740546.
  • Talebian, S., T. Rodrigues, J. Das Neves, B. Sarmento, R. Langer, and J. Conde. 2021. Facts and figures on materials science and nanotechnology progress and investment. ACS Nano 15 (10):15940–52. doi:10.1021/acsnano.1c03992.
  • Tan, X., B. Xie, J. Wang, W. He, X. Wang, and G. Wei. 2014. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: Implications for soil quality assessment. Sci. World J. 2014:1–11. doi:10.1155/2014/535768.
  • Tang, Y. J., J. M. Ashcroft, D. Chen, G. Min, C.-H. Kim, B. Murkhejee, C. Larabell, J. D. Keasling, and F. F. Chen . 2007. Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano. Lett. 7:754–60. doi:10.1021/nl063020t.
  • Ten Have, R., and P. J. Teunissen. 2001. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101 (11):3397–414. doi:10.1021/cr000115l.
  • Tian, H., C. Lu, J. Yang, K. Banger, D. N. Huntzinger, C. R. Schwalm, A. M. Michalak, R. Cook, P. Ciais, D. Hayes, et al. 2015. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Glob. Biogeochem. Cycles 29:775–92. doi:10.1002/2014GB005021.
  • Tolaymat, T., A. El Badawy, A. Genaidy, W. Abdelraheem, and R. Sequeira . 2017. Analysis of metallic and metal oxide nanomaterial environmental emissions. J. Clean Prod. 143:401–12. doi:10.1016/j.jclepro.2016.12.094.
  • Torn, M. S., S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, and D. M. Hendricks . 1997. Mineral control of soil organic carbon storage and turnover. Nature 389:170–73. doi:10.1038/38260.
  • Ushio, M., R. Wagai, T. C. Balser, and K. Kitayama. 2008. Variations in the soil microbial community composition of a tropical montane forest ecosystem: Does tree species matter? Soil Biol. Biochem. 40:2699–702. doi:10.1016/j.soilbio.2008.06.023.
  • Utobo, E. B., and L. Tewari. 2015. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 13 (1):147–69.
  • Vargas-García, M. C., F. Suárez-Estrella, M. J. López, and J. Moreno. 2010. Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Management 30 (5):771–78. doi:10.1016/j.wasman.2009.12.019.
  • Verma, A. 2021. A bibliometric analysis and visualisation of research trends in nano cellulose and its used in medical engineering. Ann. Roman. Soc. Cell Biol. 25 1 3658–64.
  • Villar, I., D. Alves, J. Garrido, and S. Mato. 2016. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Management 54:83–92. doi:10.1016/j.wasman.2016.05.011.
  • Visser, S., and D. Parkinson. 1992. Soil biological criteria as indicators of soil quality: Soil microorganisms. Am. J. Altern. Agric. 7:33–37. doi:10.1017/S0889189300004434.
  • Waldrop, M. P., D. R. Zak, and R. L. Sinsabaugh. 2004. Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol. Biochem. 36:1443–51. doi:10.1016/j.soilbio.2004.04.023.
  • Wang, X., J. Fan, and Y. Xing . 2019. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 153:121–73.
  • Xu, C. Y., C. Du, J. S. Jian, L. Hou, Z. K. Wang, Q. Wang, Z. C. Geng, J. Vencovský, J. H. W. Distler, and L. Šenolt. 2021. The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Sci. Rep. 11 (1):1–12. doi:10.1038/s41598-020-79139-8.
  • Xu, C., C. Peng, L. Sun, S. Zhang, H. Huang, Y. Chen, and J. Shi . 2015. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol. Biochem. 86:24–33. doi:10.1016/j.soilbio.2015.03.011.
  • You, T., D. Liu, J. Chen, Z. Yang, R. Dou, X. Gao, and L. Wang . 2018. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J. Soils Sediments 18:211–21. doi:10.1007/s11368-017-1716-2.
  • Yu, Y., Y. Li, Z. Zhang, Z. Gu, H. Zhong, Q. Zha, E. Chen, C. Zhu, and E. Chen. 2020. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 8 (13):816–816. doi:10.21037/atm-20-4235.
  • Zhang, Y., L. Chen, Z. Wu, and C. Sun. 2011. Kinetic parameters of soil β-glucosidase response to environmental temperature and moisture regimes. Rev. Bras. Ciênc. Solo. 35:1285–91. doi:10.1590/S0100-06832011000400022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.