195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Appraisal of environmental, ecological and carcinogenic risk due to heavy metals in a sewage and solid waste contaminated area

, ORCID Icon, , &

References

  • Antoine, J. M., L. A. H. Fung, and C. N. Grant. 2017. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol. Rep. 4:181–87. doi:10.1016/j.toxrep.2017.03.006.
  • Aydin, M. E., S. Aydin, F. Beduk, A. Tor, A. Tekinay, M. Kolb, and M. Bahadir. 2015. Effects of long-term irrigation with untreated municipal wastewater on soil properties and crop quality. Environ. Sci. Pollut. Res. 22 (23):19203–12. doi:10.1007/s11356-015-5123-1.
  • Baleeiro, A., S. Fiol, A. Otero-Fariña, and J. Antelo. 2018. Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals. Applied Geochemistry 89:129–37. doi:10.1016/j.apgeochem.2017.12.003.
  • Balkhair, K. S., and M. A. Ashraf. 2016. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biological Sci. 23 (1):S32–S44. doi:10.1016/j.sjbs.2015.09.023.
  • Banerjee, D., H. Bairagi, S. Mukhopadhyay, A. Pal, D. Bera, and L. Ray. 2010. Heavy metal contamination in fruits and vegetables in two districts of West Bengal, India. Elec. J. Env. Agricult. Food Chem. 9 (9):1423–32.
  • Bhattacharyya, K., S. Sengupta, A. Pari, S. Halder, P. Bhattacharya, B. J. Pandian, and A. R. Chinchmalatpure. 2021a. Characterization and risk assessment of arsenic contamination in soil–plant (vegetable) system and its mitigation through water harvesting and organic amendment. Environ Geochem Health. 43 (8): 2819–2834.
  • Bhattacharyya, K., S. Sengupta, A. Pari, S. Halder, P. Bhattacharya, B. J. Pandian, and A. R. Chinchmalatpure. 2021b. Assessing the human risk to arsenic through dietary exposure-a case study from West Bengal, India. J. Environ. Biol. 42:353–65.
  • Bi, C., Y. Zhou, Z. Chen, J. Jia, and X. Bao. 2018. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ. 619:1349–57. doi:10.1016/j.scitotenv.2017.11.177.
  • Chang, C. Y., H. Y. Yu, J. J. Chen, F. B. Li, H. H. Zhang, and C. P. Liu. 2014. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Monit. Assess. 186 (3):1547–60. doi:10.1007/s10661-013-3472-0.
  • Chen, H., L. K. Koopal, J. Xiong, M. Avena, and W. Tan. 2017. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. J. Colloid Interface Sci. 504:457–67. doi:10.1016/j.jcis.2017.05.078.
  • Chen, H., J. Xu, W. Tan, and L. Fang. 2019. Lead binding to wild metal-resistant bacteria analyzed by ITC and XAFS spectroscopy. Environ. Pollut. 250:118–26. doi:10.1016/j.envpol.2019.03.123.
  • Chenery, S. R., S. K. Sarkar, M. Chatterjee, A. L. Marriott, and M. J. Watts. 2020. Heavy metals in urban road dusts from Kolkata and Bengaluru, India: Implications for human health. Environ. Geochem. Health 42 (9):2627–2643.
  • Chesnin, L., and C. H. Yien. 1950. Turdimetric estimation of sulphates. Soil Sci. Soc. Am 15 (C):149–51. doi:10.2136/sssaj1951.036159950015000C0032x.
  • Chopra, A. K., and C. Pathak. 2015. Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environ. Monit. Assess. 187 (7):1–8. doi:10.1007/s10661-015-4648-6.
  • Christoforidis, A., and N. Stamatis. 2009. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151 (3–4):257–63. doi:10.1016/j.geoderma.2009.04.016.
  • CPCB. 2015. Central pollution control board, ministry of environment and forests. New Delhi: Government of India.
  • Das, S., A. G. Bag, D. Ghosh, and N. Chatterjee. 2019. Extractability of different extractants and availability of sulphur in long-term rice growing alluvial soils of West Bengal. Int. J. Chem. Stud. 7 (6):1557–63.
  • Das, A., D. K. Bandopadhyay, P. K. Jee, and A. Karmakar. 2014. Geochemistry of sediments and water with a health risk assessment of heavy metal contaminated vegetables grown in Dhapa, a waste disposal site in Kolkata, India. World Rev. Sci. Technol. Sustain. Dev. 11 (3–4):248–68. doi:10.1504/WRSTSD.2014.066817.
  • Das, S., A. Ghosh Bag, N. Chatterjee, B. Pal, D. Ghosh, and G. C. Hazra. 2020. Block wise spatial distribution and mapping of cationic micronutrients in soils of Jhargram District of West Bengal. Int. J. Environ. Clim. 10 (10):111–22. doi:10.9734/ijecc/2020/v10i1030254.
  • Das, S., D. Ghosh, P. U. Acharjee, and P. K. Patra. 2021a. Chapter-2 agricultural and environmental value of steel industry by-products. Latest Trends in Soil Science 2: 23–39.
  • Das, S., R. Khanam, A. G. Bag, N. Chatterjee, G. C. Hazra, D. Kundu, B. Pal, and S. K. P. Ghouse. 2021b. Spatial Distribution Of Sulphur And Its Relationship With Soil Attributes Under Diverse Agro-Climatic Zones of West Bengal, India. J. Indian Soc. Soil Sci. 69 (4):401–10. doi:10.5958/0974-0228.2021.00061.X.
  • Das, S., S. Mohanty, G. Sahu, M. Rana, and K. Pilli. 2021c. Biochar: A sustainable approach for improving soil health and environment. Soil Erosion-Curr. Challenges and Future Perspectives in a Changing World. 121–138.
  • Datta, S. P., A. S. Rao, and A. N. Ganeshamurthy. 1997. Effect of electrolytes coupled with variable stirring on soil pH. J. Indian Soc. Soil Sci. 45 (1):185–87.
  • Du, H., Q. Huang, C. L. Peacock, B. Tie, M. Lei, X. Liu, and X. Wei. 2018. Competitive binding of Cd, Ni and Cu on goethite organo–mineral composites made with soil bacteria. Environ. Pollut. 243:444–52. doi:10.1016/j.envpol.2018.08.087.
  • Environment Agency. 2018. Performance standard for laboratories undertaking chemical testing of soil. London UK: The Environment Agency’s Monitoring Certification Scheme (MCERTS).
  • Esri. 2014. ArcGIS, E. S. R. I. Release 10.3 Environmental Systems Research Institute. Redlands, CA: p. 127.
  • Förstner, U., and G. Müller. 1981. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: Geochemical background, man’s influence and environmental impact. GeoJournal 5 (5):417–32. doi:10.1007/BF02484715.
  • Friedli, H. R., A. F. Arellano Jr, F. Geng, C. Cai, and L. Pan. 2011. Measurements of atmospheric mercury in Shanghai during September 2009. Atmos. Chem. Phys. 11 (8):3781–88. doi:10.5194/acp-11-3781-2011.
  • Gebeyehu, H. R., L. D. Bayissa, and A. Bhatnagar. 2020. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PloS one 15 (1):e0227883. doi:10.1371/journal.pone.0227883.
  • Golui, D., S. P. Datta, B. S. Dwivedi, M. C. Meena, V. K. Trivedi, S. Jaggi, and K. K. Bandyopadhyay. 2020. Effectiveness of toxicity characteristics leaching procedure for assessing metal hazards of polluted soils in relation to human health. Soil Sediment Contam: An Int J 29 (3):304–21. doi:10.1080/15320383.2019.1709044.
  • Golui, D., S. P. Datta, B. S. Dwivedi, M. C. Meena, E. Varghese, S. K. Sanyal, P. Ray, A. K. Shukla, and V. K. Trivedi. 2019. Assessing soil degradation in relation to metal pollution–A multivariate approach. Soil Sediment Contam: An Int J 28 (7):630–49. doi:10.1080/15320383.2019.1640660.
  • Golui, D., S. P. Datta, R. K. Rattan, B. S. Dwivedi, and M. C. Meena. 2014. Predicting bioavailability of metals from sludge-amended soils. Environ. Monit. Assess. 186 (12):8541–53. doi:10.1007/s10661-014-4023-z.
  • Golui, D., D. G. Mazumder, S. K. Sanyal, S. P. Datta, P. Ray, P. K. Patra, S. Sarkar, and K. Bhattacharya. 2017. Safe limit of arsenic in soil in relation to dietary exposure of arsenicosis patients from Malda district, West Bengal-A case study. Ecotoxicol. Environ. Saf. 144:227–35. doi:10.1016/j.ecoenv.2017.06.027.
  • Gupta, D., R. Ghosh, A. K. Mitra, S. Roy, M. Sarkar, S. Chowdhury, A. Bhowmik, U. Mukhopadhyay, S. Maskey, and C. U. Ro. 2011. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis. J. Air Waste Manage. Assoc. 61 (11):1102–14. doi:10.1080/10473289.2011.604286.
  • Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14 (8):975–1001. doi:10.1016/0043-1354(80)90143-8.
  • Houben, D., J. Pircar, and P. Sonnet. 2012. Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. J. Geochem. Explor. 123:87–94. doi:10.1016/j.gexplo.2011.10.004.
  • Hu, B., S. Chen, J. Hu, F. Xia, J. Xu, Y. Li, Z. Shi, and J. Paz-Ferreiro. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS One 12 (2):e0172438. doi:10.1371/journal.pone.0172438.
  • Hu, Y., D. Wang, L. Wei, and B. Song. 2014. Heavy metal contamination of urban topsoils in a typical region of Loess Plateau, China. J Soil Sediment. 14 (5):928–35. doi:10.1007/s11368-013-0820-1.
  • Huang, D. L., R. Z. Wang, Y. G. Liu, G. M. Zeng, C. Lai, P. Xu, B. A. Lu, J. J. Xu, C. Wang, and C. Huang. 2015. Application of molecularly imprinted polymers in wastewater treatment: A review. Environ. Sci. Pollut. Res. 22 (2):963–77. doi:10.1007/s11356-014-3599-8.
  • IARC (2020) IARC monographs on the identification of carcinogenic hazards to humans. International Agency for Research on Cancer-World Health Organization. https://monographs.iarc.fr/list-of-classifications. Retrieved on 30 Jun 2020
  • Jackson, M. L. 1973. Soil chemical analysis. New Delhi: Prentice Hall.
  • Kachenko, A. G., and B. Singh. 2006. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169 (1):101–23. doi:10.1007/s11270-006-2027-1.
  • Kankia, H. I., and Y. Abdulhamid. 2014. Determination of accumulated heavy metals in benthic invertebrates found in Ajiwa Dam, Katsina State, Northern Nigeria. Arch. Appl. Sci. Res. 6 (6):80–87.
  • Kharche, V. K., V. N. Desai, and A. L. Pharande. 2011. Effect of sewage irrigation on soil properties, essential nutrient and pollutant element status of soils and plants in a vegetable growing area around Ahmednagar city in Maharashtra. J. Indian Soc. Soil Sci. 59 (2):177–84.
  • Knudsen, D., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium, and potassium. In Methods of soil analysis. Part 2. Chemical and microbiological properties. Agron. Monogr, ed. A. L. Page, et al., Vol. 9, 225–46. Madison, WI: ASA and SSSA.
  • Koka, R. K., K. Pilli, S. Das, and K. T. Meghana. 2020. Chapter-2 municipal solid waste: Management and MSW compost impact on soil fertility. Curr Res. Soil Fertil. 2:33–62.
  • Kong, X., T. Tian, S. Xue, W. Hartley, L. Huang, C. Wu, and C. Li. 2018. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation. Land Degrad. Dev. 29 (1):58–67. doi:10.1002/ldr.2836.
  • Korzeniowska, J., and P. Krąż. 2020. Heavy metals content in the soils of the Tatra National Park near Lake Morskie Oko and Kasprowy Wierch—A case study (Tatra Mts, Central Europe). Minerals 10 (12):1120. doi:10.3390/min10121120.
  • Li, D., D. Sun, S. Hu, J. Hu, and X. Yuan. 2016. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr (Ⅵ)-contaminated soil. Chemosphere 144:1823–30. doi:10.1016/j.chemosphere.2015.09.077.
  • Li, J., X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, and X. Wang. 2018. Metal–organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47 (7):2322–56. doi:10.1039/C7CS00543A.
  • Li, C., K. Zhou, W. Qin, C. Tian, M. Qi, X. Yan, and W. Han. 2019. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam: An Int J 28 (4):380–94. doi:10.1080/15320383.2019.1592108.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42 (3):421–28. doi:10.2136/sssaj1978.03615995004200030009x.
  • Liu, L., W. Li, W. Song, and M. Guo. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633:206–19. doi:10.1016/j.scitotenv.2018.03.161.
  • Liu, X., Q. Song, Y. Tang, W. Li, J. Xu, J. Wu, P. C. Brookes, and P. C. Brookes. 2013. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 463:530–40. doi:10.1016/j.scitotenv.2013.06.064.
  • Liu, Z., W. Zhou, J. Shen, P. He, Q. Lei, and G. Liang. 2014. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma 235:39–47. doi:10.1016/j.geoderma.2014.06.027.
  • Loganathan, P., S. Vigneswaran, J. Kandasamy, and R. Naidu. 2012. Cadmium sorption and desorption in soils: A review. Crit Rev Environ Sci Technol 42 (5):489–533. doi:10.1080/10643389.2010.520234.
  • Loix, C., M. Huybrechts, J. Vangronsveld, M. Gielen, E. Keunen, and A. Cuypers. 2017. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867. doi:10.3389/fpls.2017.01867.
  • Luo, C., C. Liu, Y. Wang, X. Liu, F. Li, G. Zhang, and X. Li. 2011. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. J. Hazard. Mater. 186 (1):481–90. doi:10.1016/j.jhazmat.2010.11.024.
  • Lux, A., M. Martinka, M. Vaculík, and P. J. White. 2011. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 62 (1):21–37. doi:10.1093/jxb/erq281.
  • Malkoc, S., B. Yazıcı, and A. Savas Koparal. 2010. Assessment of the levels of heavy metal pollution in roadside soils of Eskisehir, Turkey. Environ. Toxicol. Chem. 29 (12):2720–25. doi:10.1002/etc.354.
  • Mandal, J., D. Golui, and S. P. Datta. 2019. Assessing equilibria of organo-arsenic complexes and predicting uptake of arsenic by wheat grain from organic matter amended soils. Chemosphere 234:419–26. doi:10.1016/j.chemosphere.2019.06.088.
  • Mandal, R., and S. Kaur. 2019. Impact of environmental pollution on trace elements in vegetables and associated potential risk to human health in industrial town Mandi-gobindgarh (India). Chemosphere 219:574–87. doi:10.1016/j.chemosphere.2018.12.034.
  • Mani, P. K., A. Mandal, D. Mandal, M. Irfan, G. C. Hazra, S. Saha, D. Richardson, J. Alguacil, C. Poole, and L. Trasande. 2021. Assessment of non-carcinogenic and carcinogenic risks due to ingestion of vegetables grown under sewage water irrigated soils near a 33 years old landfill site in Kolkata, India. Expos. Ealth 1–22. doi:10.1007/s12403-021-00436-2.
  • Meena, R., S. P. Datta, D. Golui, B. S. Dwivedi, and M. C. Meena. 2016. Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain. Environ. Sci. Pollut. Res. 23 (14):14269–83. doi:10.1007/s11356-016-6556-x.
  • Nabulo, G., C. R. Black, and S. D. Young. 2011. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environ. Pollut. 159 (2):368–76. doi:10.1016/j.envpol.2010.11.007.
  • Naser, H. M., S. Sultana, R. Gomes, and S. Noor. 2012. Heavy metal pollution of soil and vegetable grown near roadside at Gazipur. Bangladesh J. Agric. Res. 37 (1):9–17. doi:10.3329/bjar.v37i1.11170.
  • National Nutrition Monitoring Bureau. (NNMB) (2012). Diet and nutritional status of rural population, prevalence of hypertension and diabetes among adults and infant and young child feeding practices: Report of Third Repeat Survey.
  • Nimyel, N. D., and E. S. Chundusu. 2021. Assessment of heavy metal levels in soil and vegetables in some farms around mining sites in mangu local government area Plateau State, Nigeria. Eu. J. Ad. Chem. Res. 2 (5):1–10. doi:10.24018/ejchem.2021.2.5.81.
  • Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. In Methods of soil analysis. Part 2. Agron. Monogr, ed. A. L. Page, et al., Vol. 9, 403–30. Madison, WI: ASA and SSSA.
  • Oyunbat, P., O. Batkhishig, B. Batsaikhan, F. Lehmkuhl, M. Knippertz, and V. Nottebaum. 2021. Spatial distribution, pollution, and health risk assessment of heavy metal in industrial area soils of Ulaanbaatar, Mongolia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 43:123–33. doi:10.5194/isprs-archives-XLIII-B4-2021-123-2021.
  • Punia, A. 2021. Role of temperature, wind, and precipitation in heavy metal contamination at copper mines: A review. Environ. Sci. Pollut. Res. 28 (4):4056–72. doi:10.1007/s11356-020-11580-8.
  • Qu, C., W. Chen, X. Hu, P. Cai, C. Chen, X. Y. Yu, and Q. Huang. 2019. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. Environ Int 131:104995. doi:10.1016/j.envint.2019.104995.
  • Qu, C., S. Wang, L. Ding, M. Zhang, D. Wang, and J. P. Giesy. 2018. Spatial distribution, risk and potential sources of lead in soils in the vicinity of a historic industrial site. Chemosphere 205:244–52. doi:10.1016/j.chemosphere.2018.04.119.
  • Rahman, M. S., Z. Ahmed, S. M. Seefat, R. Alam, A. R. M. T. Islam, T. R. Choudhury, B. A. Begum, and A. M. Idris. 2022. Assessment of heavy metal contamination in sediment at the newly established tannery industrial Estate in Bangladesh: A case study. Environ. Chem. Ecotoxicol. 4:1–12. doi:10.1016/j.enceco.2021.10.001.
  • Reimann, C., P. Filzmoser, and R. G. Garrett. 2005. Background and threshold: Critical comparison of methods of determination. Sci. Total Environ. 346 (1–3):1–16. doi:10.1016/j.scitotenv.2004.11.023.
  • Reimann, C., and R. G. Garrett. 2005. Geochemical background—concept and reality. Sci. Total Environ. 350 (1–3):12–27. doi:10.1016/j.scitotenv.2005.01.047.
  • Reza, S. K., U. Baruah, and D. Sarkar. 2012. Spatial variability of soil properties in Brahmaputra plains of north-eastern India: A geostatistical approach. J. Indian Soc. Soil Sci. 60 (2):108.
  • Reza, S. K., U. Baruah, S. K. Singh, and R. Srinivasan. 2016. Spatial heterogeneity of soil metal cations in the plains of humid subtropical northeastern India. Agricultural Research 5 (4):346–52. doi:10.1007/s40003-016-0217-7.
  • Reza, S. K., D. C. Nayak, S. Mukhopadhyay, T. Chattopadhyay, and S. K. Singh. 2017. Characterizing spatial variability of soil properties in alluvial soils of India using geostatistics and geographical information system. Arch. Agron. Soil Sci. 63 (11):1489–98. doi:10.1080/03650340.2017.1296134.
  • Ripin, S. N. M., S. Hasan, M. L. Kamal, and N. M. Hashim. 2014. Analysis and pollution assessment of heavy metal in soil, Perlis. Malays. J. Anal. Sci. 18 (1):155–61.
  • Saha, S., G. C. Hazra, B. Saha, and B. Mandal. 2015. Assessment of heavy metals contamination in different crops grown in long-term sewage-irrigated areas of Kolkata, West Bengal, India. Environ. Monit. Assess. 187 (1):1–12. doi:10.1007/s10661-014-4087-9.
  • Saha, S., B. Saha, S. Pati, S. Dasgupta, B. Pal, A. Ghosh Bag, and G. C. Hazra. 2018. Phytoavailability of heavy metals in relation to soil chemical properties and health risk assessment through major exposure pathways in a long-term sewage contaminated areas of Kolkata, India. Fresenius Environ. Bull. 27 (11):7559–71.
  • Sahu, G., S. Das, and S. Mohanty. 2020a. Nutrient budgeting of primary nutrients and their use efficiency in India. Int. Res. J. Pure Appl. Chem. 92–114. doi:10.9734/irjpac/2020/v21i1130227.
  • Sahu, G., S. Mohanty, and S. Das. 2020b. Conservation agriculture-a way to improve soil health. J. Exp. Biol. Agric. Sci. 8 (4):355–68. doi:10.18006/2020.8(4).355.368.
  • Sarwar, N., M. Imran, M. R. Shaheen, W. Ishaque, M. A. Kamran, A. Matloob, A. Rehim, and S. Hussain. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171:710–21. doi:10.1016/j.chemosphere.2016.12.116.
  • Sawut, R., N. Kasima, B. Maihemuti, L. Hue, A. Abliz, A. Abdujappar, and M. Kurbana. 2018. Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Sci. Total Environ. 642:864–78. doi:10.1016/j.scitotenv.2018.06.034.
  • Sengupta, S., K. Bhattacharyya, J. Mandal, P. Bhattacharya, S. Halder, and A. Pari. 2021. Deficit irrigation and organic amendments can reduce dietary arsenic risk from rice: Introducing machine learning-based prediction models from field data. Agric Ecosyst Environ 319:107516. doi:10.1016/j.agee.2021.107516.
  • Sengupta, S., K. Bhattacharyya, J. Mandal, and A. P. Chattopadhyay. 2022. Complexation, retention and release pattern of arsenic from humic/fulvic acid extracted from zinc and iron enriched vermicompost. J. Environ. Manage., 318:115531. 10.1016/j.jenvman.2022.115531
  • Shaheen, N., M. K. Ahmed, M. S. Islam, M. Habibullah-Al-Mamun, A. B. Tukun, S. Islam, and A. T. M. Rahim. 2016. Health risk assessment of trace elements via dietary intake of ‘non-piscine protein source’ foodstuffs (meat, milk and egg) in Bangladesh. Environ. Sci. Pollut. Res. 23 (8):7794–806. doi:10.1007/s11356-015-6013-2.
  • Sharma, R. P., S. Chattaraj, D. Vasu, K. Karthikeyan, P. Tiwary, R. K. Naitam, B. Dash, G. Tiwari, A. Jangir, A. Daripa, et al. 2020. Spatial variability assessment of soil fertility in black soils of central India using geostatistical modeling. Arch. Agron. Soil Sci. 67 (7):876–888.
  • Sharma, S., A. K. Nagpal, and I. Kaur. 2018. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 255:15–22. doi:10.1016/j.foodchem.2018.02.037.
  • Shi, D., and X. Lu. 2018. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Sci. Total Environ. 636:1211–18. doi:10.1016/j.scitotenv.2018.04.385.
  • Shukla, A. K., S. K. Behera, N. K. Lenka, P. K. Tiwari, C. Prakash, R. S. Malik, N. K. Sinha, V. K. Singh, A. K. Patra, and S. K. Chaudhary. 2016. Spatial variability of soil micronutrients in the intensively cultivated Trans-Gangetic Plains of India. Soil Tillage Res. 163:282–89. doi:10.1016/j.still.2016.07.004.
  • Silva, H. F., N. F. Silva, C. M. Oliveira, and M. J. Matos. 2021. Heavy metals contamination of urban soils—A decade study in the city of Lisbon, Portugal. Soil Systems 5 (2):27. doi:10.3390/soilsystems5020027.
  • Simard, R. R. 1993. Ammonium acetate-extractable elements. Soil Samp. Meth. Anal. 1:39–42.
  • Singh, S., and M. Kumar. 2006. Heavy metal load of soil, water and vegetables in peri-urban Delhi. Environ. Monit. Assess. 120 (1):79–91. doi:10.1007/s10661-005-9050-3.
  • Singh, A., R. K. Sharma, M. Agrawal, and F. M. Marshall. 2010. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Tropical Ecology 51 (2):375–87.
  • Subbiah, B., and G. L. Asija. 1956. Alkaline permanganate method of available nitrogen determination. Curr. Sci. 25:259.
  • Sun, Z., X. Xie, P. Wang, Y. Hu, and H. Cheng. 2018. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 639:217–27. doi:10.1016/j.scitotenv.2018.05.176.
  • Tamburi, V., A. Shetty, and S. Shrihari. 2020. Characterization of spatial variability of vertisol micronutrients by geostatistical techniques in Deccan Plateau of India. Model. Earth Syst. Environ. 6 (1):173–82. doi:10.1007/s40808-019-00669-w.
  • Tomlinson, D. L., J. G. Wilson, C. R. Harris, and D. W. Jeffrey. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen 33 (1–4):566–75. doi:10.1007/BF02414780.
  • Turner, A., and M. Lewis. 2018. Lead and other heavy metals in soils impacted by exterior legacy paint in residential areas of south west England. Sci. Total Environ. 619:1206–13. doi:10.1016/j.scitotenv.2017.11.041.
  • Uzu, G., S. Sobanska, G. Sarret, M. Munoz, and C. Dumat. 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ. Sci. Technol. 44 (3):1036–42. doi:10.1021/es902190u.
  • Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37 (1):29–38. doi:10.1097/00010694-193401000-00003.
  • Wan, D., N. Zhang, W. Chen, P. Cai, L. Zheng, and Q. Huang. 2018. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Environ. Sci. Pollut. Res. 25 (32):32130–39. doi:10.1007/s11356-018-3173-x.
  • Wang, P., Z. Sun, Y. Hu, and H. Cheng. 2019. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 695:133893. doi:10.1016/j.scitotenv.2019.133893.
  • Weissmannová, H. D., and J. Pavlovský. 2017. Indices of soil contamination by heavy metals–methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 189 (12):1–25. doi:10.1007/s10661-017-6340-5.
  • Wilding, L. P. (1985). Spatial variability: Its documentation, accommodation and implication to soil surveys. In Soil spatial variability, Las Vegas NV, 30 November-1 December 1984 Las Vegas (pp. 166–94).
  • Wu, Y., H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, and X. Wang. 2019. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 246:608–20. doi:10.1016/j.envpol.2018.12.076.
  • Xue, S., L. Shi, C. Wu, H. Wu, Y. Qin, W. Pan, W. Hartley, and M. Cui. 2017. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ. Res. 156:23–30. doi:10.1016/j.envres.2017.03.014.
  • Yang, Y., and J. Fein. 2017. Adsorption of metals by geomedia III: Fundamentals and implications of metal adsorption. Chem. Geol. 464:1–3. doi:10.1016/j.chemgeo.2017.04.013.
  • Yang, Q., Z. Li, X. Lu, Q. Duan, L. Huang, and J. Bi. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 642:690–700. doi:10.1016/j.scitotenv.2018.06.068.
  • Yu, R., Q. Jiang, C. Xv, L. Li, S. Bu, and G. Shi. 2019. Comparative proteomics analysis of peanut roots reveals differential mechanisms of cadmium detoxification and translocation between two cultivars differing in cadmium accumulation. BMC Plant Biol. 19 (1):1–15. doi:10.1186/s12870-019-1739-5.
  • Zhu, F., Q. Cheng, S. Xue, C. Li, W. Hartley, C. Wu, and T. Tian. 2018. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas. Land Degrad. Dev. 29 (1):138–49. doi:10.1002/ldr.2848.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.