137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Response of Soil Enzymatic and Microbial Activities to Mixture Formulation of Mesosulfuron Methyl and Iodosulfuron Methyl and Its Degradation in Soil

, , &

References

  • Bacmaga, M., A. Borowik, J. Kucharski, M. Tomkiel, and J. Wyszkowska. 2015. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron methyl + iodosulfuron-methyl. Environ. Sci. Pollut. Res 22 (1):643–56. doi:10.1007/s11356-014-3395-5.
  • Baize, D. 2018 Guide des analyses en pédologie. Guide des analyses en pédologie (France: Éditions Quae). 1–328.
  • Douglas, L. A., and J. M. Bremner. 1970. Extraction and colorimetric determination of urea in soils. Soil Sci. Soc. Am. J 34 (6):859–62. doi:10.2136/sssaj1970.03615995003400060015x.
  • EPA. Data Evaluation report on mesosulfuron methyl, United States Environmental Protection Agency. 2004. Available at: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-122009_31-Mar-04.pdf Assessed on 31 March 2004.
  • EPA. Registration review label mitigation for iodosulfuron methyl. 2019. United States Environmental Protection Agency. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000432-01404-20190410.pdf. April 10, 2019.
  • European Food Safety Authority (EFSA). 2016a. Peer review of the pesticide risk assessment of the active substance iodosulfuron‐methyl (approved as iodosulfuron). EFSA J 14(4):4453.
  • European Food Safety Authority (EFSA). 2016b. Peer review of the pesticide risk assessment of the active substance mesosulfuron (variant evaluated mesosulfuron‐methyl). EFSA J 14(10):e04584. doi:10.2903/j.efsa.2016.4584.
  • Fernandez-Calvino, D., P. Soler-Rovira, A. Polo, M. Diaz-Ravina, M. Arias-Estévez, and C. Plaza. 2010. Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biol. Biochem 42 (12):2119–27. doi:10.1016/j.soilbio.2010.08.007.
  • Gevao, B., K. T. Semple, and A. Jones. 2000. Bound pesticide residues in soil: A review. Environ. Pollut. 108 (1):3–14. doi:10.1016/S0269-7491(99)00197-9.
  • Gill, H. S., U. S. Walia, and L. S. Brar. 1978. Control of Phalaris minor Retz. and wild oat in wheat with new herbicides. Pesticides 12:53–56.
  • Jyot, G., K. Mandal, and B. Singh. 2015. Effect of dehydrogenase, phosphate and urease activity in cotton soil after applying thiamethoxam as seed treatment. Environ. Monit. Assess. 187 (5):1–7. doi:10.1007/s10661-015-4432-7.
  • Kaur, H., and P. Kaur. 2018. Effect of soil type, moisture and temperature on the dissipation of penoxsulam in soil under laboratory conditions. Bull. Environ. Contam. Toxicol 101 (6):803–09. doi:10.1007/s00128-018-2452-z.
  • Kaur, H., and P. Kaur. 2021. Comparison of extraction procedures for the determination of mesosulfuron methyl and iodosulfuron methyl sodium from soil and wheat using response surface modelling. Microchem J 168:106456. doi:10.1016/j.microc.2021.106456.
  • Kaur, L., and P. Kaur. 2022. Degradation of imazethapyr in soil: Impact of application rate, soil physicochemical properties and temperature. Int. J. Environ. Sci. Technol 19 (3):1877–92. doi:10.1007/s13762-021-03137-0.
  • Kekane, S. S., R. P. Chavan, D. N. Shinde, C. L. Patil, and S. S. Sagar. 2015. A review on physico-chemical properties of soil. Int. J. Chem. Stud 3 (4):29–32.
  • Lewis, K. A., P. Tzilivakis, D. Warner, and A. Green. 2016. An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22 (4):1050–64. doi:10.1080/10807039.2015.1133242.
  • Mathieu, C., and F. Pieltain. 2003. Analyse chimique des sols. France: Lavoisier.
  • Mehdizadeh, M. 2016. Effect of pesticide residues on agricultural food production; A case study: Sensitivity of oilseed rape to Triasulfuron herbicide soil residue. MOJ Food Process Technol 2 (6):00053.
  • Mehdizadeh, M. 2019. Sensitivity of oilseed rape (Brassica napus L.) to soil residues of imazethapyr herbicide. Int. J. Agric. Environ. Food Sci 3 (1):46–49. doi:10.31015/jaefs.2019.1.10.
  • Mehdizadeh, M., M. T. Alebrahim, and M. Roushani. 2017. Determination of two sulfonylurea herbicides residues in soil environment using HPLC and phytotoxicity of these herbicides by lentil bioassay. Bull. Environ. Contam. Toxicol 99 (1):93–99. doi:10.1007/s00128-017-2076-8.
  • Mehdizadeh, M., M. T. Alebrahim, M. Roushani, and J. C. Streibig. 2016. Evaluation of four different crops’ sensitivity to sulfosulfuron and tribenuron methyl soil residues. Acta Agriculturae Scandinavica Sec B 66 (8):706–13.
  • Mehdizadeh, M., and F. Gholami Abadan. 2018. Negative effects of residual herbicides on sensitive crops: Impact of rimsulfuron herbicide soil residue on sugar beet. J. Res. Weed Sci 1 (1):1–6.
  • Mehdizadeh, M., and W. Mushtaq. 2020. Biological control of weeds by allelopathic compounds from different plants: A bioherbicide approach. In Natural remedies for pest, disease and weed control, 107–17 . Academic Press, Elsevier. ISBN 978-0-12-819304-4.
  • Priya, R. S., C. Chinnusamy, P. M. Arthanari, and P. Janaki. 2017. Microbial and dehydrogenase activity of soil contaminated with herbicide combination in direct seeded rice (Oryza sativa L.). J. Entomol. Zool. Std 5:1205–12.
  • Raj, S. K., E. K. Syriac, L. G. Devi, K. S. M. Kumari, V. R. Kumar, and B. Aparna. 2015. Impact of new herbicide molecule bispyribac-sodium+metamifop on soil health under direct seeded rice lowland condition. Crop. Res 50:1–8.
  • Ramanathan, S. S., T. W. Gannon, W. J. Everman, and A. M. Locke. 2022. Atrazine, mesosulfuron‐methyl, and topramezone persistence in North Carolina soils. Agron J 114 (2):1068–79. doi:10.1002/agj2.21041.
  • Rector, L. S., K. B. Pittman, S. C. Beam, K. W. Bamber, C. W. Cahoon, W. H. Frame, and M. L. Flessner. 2020. Herbicide carryover to various fall-planted cover crop species. Weed Technol 34 (1):25–34. doi:10.1017/wet.2019.79.
  • Rouchaud, J., C. Moulard, H. Eelen, and R. Bulcke. 2003. Persistence of the sulfonylurea herbicide iodosulfuron-methyl in the soil of winter wheat crops. Toxicol Environ Chem 85 (4–6):103–20. doi:10.1080/02772240410001665409.
  • Rousk, J., P. C. Brookes, and E. Baath. 2010. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem 42 (3):516–20. doi:10.1016/j.soilbio.2009.11.026.
  • Saini, A., P. Kaur, K. Singh, and M. S. Bhullar. 2022. Influence of soil properties, temperature and pH on adsorption-desorption of imazamox in Indian aridisols. Archiv. Agron. Soil Sci 68 (12):1726–45. doi:10.1080/03650340.2021.1925652.
  • Sarmah, A. K., and J. Sabadie. 2002. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: A review. J. Agric. Food Chem 50 (22):6253–65. doi:10.1021/jf025575p.
  • Sharma, S., P. Singh, P. Angmo, and S. Satpute. 2022. Total and labile pools of organic carbon in relation to soil biological properties under contrasting land-use systems in a dry mountainous region. Carbon Manag 13 (1):352–371. doi:10.1080/17583004.2022.2089236.
  • Tabatabai, M. A. 1982. Soil enzymes. In Methods of soil analysis: Part 2 Microbiological and biochemical properties, edited by R. W. Weaver, J. S. Angle, and P. S. Bottomley, 775–833. Wiley.
  • Tabatabai, M. A., and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Boil. Biochem 1 (4):301–07. doi:10.1016/0038-0717(69)90012-1.
  • Vandana, L. J., P. C. Rao, and G. Padmaja. 2012. Effect of herbicides and nutrient management on soil enzymatic activity. J. Rice Res 5 (1):50–58.
  • Wagh, G. S., D. M. Chavhan, and M. R. G. Sayyed. 2013. Physicochemical analysis of soils from eastern part of Pune City. Univ. J. Environ. Res. Technol 3 (1):305–33.
  • Walia, S. S., L. S. Brar, and B. K. Dhaliwal. 1997. Resistance to isoproturon in Phalaris minor Retz. in Punjab. Plant Prot 12:138–40.
  • Yadav, A., and R. K. Malik. 2005. Herbicide resistant Phalaris minor in wheat–A sustainability issue. Resource Book. Hisar: Department of Agronomy and Directorate of Extension Education, Chaudhary Charan Singh Haryana Agricultural University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.