188
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Application of Artificial Neural Network and Shrinking Core Model for Copper (Ii) and Lead (Ii) Leaching from Contaminated Soil Using Ethylenediaminetetraacetic Acid

ORCID Icon, &

References

  • Ahmadi, S., M. Mesbah, C. A. Igwegbe, C. D. Ezeliora, C. Osagie, N. A. Khan, G. L. Dotto, M. Salari, and M. H. Dehghani, et al. 2021. Sono electro-chemical synthesis of LaFeO3nanoparticles for the removal of fluoride: Optimization and modeling using RSM, ANN and GA tools. J. Environ. Chem. Eng. 9 (4):105320. doi:10.1016/j.jece.2021.105320.
  • Aigbe, U. O., K. E. Ukhurebor, R. B. Onyancha, B. Okundaye, K. Pal, O. A. Osibote, E. L. Esiekpe, H. S. Kusuma, and H. Darmokoesoemo, et al. 2022. A Facile Review on the Sorption of Heavy Metals and Dyes Using Bionanocomposites. Adsorp. Sci. Technol . 2022:1–36. doi:10.1155/2022/8030175.
  • Aigbe, U. O., K. E. Ukhurebor, R. B. Onyancha, O. A. Osibote, H. Darmokoesoemo, and H. S. Kusuma. 2021. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: A review. J. Mater. Res. Technol. 14:2751–74. doi:10.1016/j.jmrt.2021.07.140.
  • Aversano, G., G. D’Alessio, A. Coussement, F. Contino, and A. Parente. 2021. Combination of polynomial chaos and Kriging for reduced-order model of reacting flow applications. Results Eng. 10 (April):100223. doi:10.1016/j.rineng.2021.100223.
  • Ayoola, A. A., F. K. Hymore, C. A. Omonhinmin, P. O. Babalola, O. S. I. Fayomi, O. C. Olawole, A. V. Olawepo, and A. Babalola, et al. 2020. Response surface methodology and artificial neural network analysis of crude palm kernel oil biodiesel production. Chem. Data Collect. 28:100478. doi:10.1016/j.cdc.2020.100478.
  • Ayoola, A. A., F. K. Hymore, C. A. Omonhinmin, O. C. Olawole, O. S. I. Fayomi, D. Babatunde, and O. Fagbiele. 2019. Analysis of waste groundnut oil biodiesel production using response surface methodology and artificial neural network. Chem. Data Collect. 22:100238. doi:10.1016/j.cdc.2019.100238.
  • Bohlouli, A., M. R. Afshar, M. R. Aboutalebi, and S. H. Seyedein. 2016. Optimization of tungsten leaching from low manganese wolframite concentrate using Response Surface Methodology (RSM). Int J Refract Metals Hard Mater 61:107–14. doi:10.1016/j.ijrmhm.2016.07.012.
  • Cojocaru, C., A. C. Humelnicu, P. Pascariu, and P. Samoila. 2021. Artificial neural network and molecular modeling for assessing the adsorption performance of a hybrid alginate-based magsorbent. J Mol Liq 337:116406. doi:10.1016/j.molliq.2021.116406.
  • Coman, V., B. Robotin, and P. Ilea. 2013. Nickel recovery/removal from industrial wastes: A review. Resour. Conserv. Recycl. 73:229–38. doi:10.1016/j.resconrec.2013.01.019.
  • David Samuel, O., M. Adekojo Waheed, A. Taheri-Garavand, T. N. Verma, O. U. Dairo, B. O. Bolaji, and A. Afzal. 2021. Prandtl number of optimum biodiesel from food industrial waste oil and diesel fuel blend for diesel engine. Fuel 285:119049. doi:10.1016/j.fuel.2020.119049.
  • Di Palma, L., P. Ferrantelli, and F. Medici. 2005. Heavy metals extraction from contaminated soil: Recovery of the flushing solution. J. Environ. Manage. 77 (3):205–11. doi:10.1016/j.jenvman.2005.02.018.
  • Farhang, F., M. Rayson, G. Brent, T. Hodgins, M. Stockenhuber, and E. Kennedy. 2017. Insights into the Dissolution Kinetics of Thermally Activated Serpentine for CO 2 Sequestration. J. Chem. Eng. 330 (August):1174–86. doi:10.1016/j.cej.2017.08.073.
  • Ferraro, A., E. D. van Hullebusch, D. Huguenot, M. Fabbricino, and G. Esposito. 2015. Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil. J. Environ. Manage. 163:62–69. doi:10.1016/j.jenvman.2015.08.004.
  • Floris, B., P. Galloni, F. Sabuzi, and V. Conte. 2017. Metal systems as tools for soil remediation. Inorganica Chim Acta 455:429–45. doi:10.1016/j.ica.2016.04.003.
  • Franco, D. S. P., F. A. Duarte, N. P. G. Salau, and G. L. Dotto. 2019. Adaptive neuro-fuzzy inference system (ANIFS) and artificial neural network (ANN) applied for indium (III) adsorption on carbonaceous materials. Chem Eng Commun 206 (11):1463–73. doi:10.1080/00986445.2019.1566129.
  • Ghassa, S., M. Noaparast, S. Z. Shafaei, H. Abdollahi, M. Gharabaghi, and Z. Boruomand. 2017. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy 171 (June):362–73. doi:10.1016/j.hydromet.2017.06.012.
  • Giannis, A., D. Pentari, J. Y. Wang, and E. Gidarakos. 2010. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils. J. Hazard. Mater. 184 (1–3):547–54. doi:10.1016/j.jhazmat.2010.08.070.
  • Gonzalez-Estrella, J., G. Li, S. E. Neely, D. Puyol, R. Sierra-Alvarez, and J. A. Field. 2017. Elemental copper nanoparticle toxicity to anaerobic ammonium oxidation and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity. Chemosphere 184:730–37. doi:10.1016/j.chemosphere.2017.06.054.
  • Han, Y., L. Zhang, J. Gu, J. Zhao, and J. Fu (2018). Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophila Pall. cultivated in Pb mine tailings. International Biodeterioration and Biodegradation, 128:15–21. doi:10.1016/j.ibiod.2016.05.011.
  • Kabuba, J., and M. Banza. 2020. Results in Engineering Ion-exchange process for the removal of Ni (II) and Co (II) from wastewater using modi fi ed clinoptilolite: Modeling by response surface methodology and arti fi cial neural network. Results Eng. 8 (September):100189. doi:10.1016/j.rineng.2020.100189.
  • Koech, L., R. Everson, H. Neomagus, and H. Rutto. 2015. Leaching kinetics of bottom ash waste as a source of calcium ions. J. Air Waste Manage. Assoc. 65 (2):126–32. doi:10.1080/10962247.2014.978958.
  • Lévesque Michaud, M., B. Plante, B. Bussière, M. Benzaazoua, and J. Leroux. 2017. Development of a modified kinetic test using EDTA and citric acid for the prediction of contaminated neutral drainage. J. Geochem. Explor. 181 (July):58–68. doi:10.1016/j.gexplo.2017.07.001.
  • Li, Y., B. Wang, Q. Xiao, C. Lartey, and Q. Zhang. 2017. The mechanisms of improved chalcopyrite leaching due to mechanical activation. Hydrometallurgy 173:149–55. doi:10.1016/j.hydromet.2017.08.014.
  • Makino, T., Y. Maejima, I. Akahane, T. Kamiya, H. Takano, S. Fujitomi, T. Ibaraki, A. Kunhikrishnan, and N. Bolan, et al. 2016. A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment. Geoderma 270:3–9. doi:10.1016/j.geoderma.2016.01.006.
  • Pociecha, M., D. Kastelec, and D. Lestan. 2011. Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil. J. Hazard. Mater. 192 (2):714–21. doi:10.1016/j.jhazmat.2011.05.077.
  • Race, M., R. Marotta, M. Fabbricino, F. Pirozzi, R. Andreozzi, L. Cortese, and P. Giudicianni. 2016. Copper and zinc removal from contaminated soils through soil washing process using ethylenediaminedisuccinic acid as a chelating agent: A modeling investigation. J. Environ. Chem. Eng. 4 (3):2878–91. doi:10.1016/j.jece.2016.05.031.
  • Soja, G., B. Wimmer, F. Rosner, F. Faber, G. Dersch, J. von Chamier, Pardeller, G., Ameur, D., Keiblinger, K., Zehetner, F., et al. 2018. Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. Appl. Geochem. 88:40–48. doi:10.1016/j.apgeochem.2017.06.004.
  • Song, B., G. Zeng, J. Gong, J. Liang, P. Xu, Z. Liu, Y. Zhang, C. Zhang, M. Cheng, Y. Liu, et al. 2017. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105 (January):43–55. doi:10.1016/j.envint.2017.05.001.
  • Ukhurebor, K. E., U. O. Aigbe, R. B. Onyancha, W. Nwankwo, O. A. Osibote, H. K. Paumo, O. M. Ama, C. O. Adetunji, and I. U. Siloko, et al. 2021. Effect of hexavalent chromium on the environment and removal techniques: A review. J. Environ. Manage. 280:111809. doi:10.1016/j.jenvman.2020.111809.
  • Voglar, D., and D. Lestan. 2010. Electrochemical separation and reuse of EDTA after extraction of Cu contaminated soil. J. Hazard. Mater. 180 (1–3):152–57. doi:10.1016/j.jhazmat.2010.04.007.
  • Wang, X. L., M. H. Wang, S. X. Quan, B. Yan, and X. M. Xiao. 2016. Influence of thermal treatment on fixation rate and leaching behavior of heavy metals in soils from a typical e-waste processing site. J. Environ. Chem. Eng. 4 (1):82–88. doi:10.1016/j.jece.2015.11.006.
  • Zhang, -Z.-Z., Y.-F. Cheng, Y.-H. Zhou, X. Buayi, and R.-C. Jin. 2015. A novel strategy for accelerating the recovery of an anammox reactor inhibited by copper(II): EDTA washing combined with biostimulation via low-intensity ultrasound. J. Chem. Eng. 279 (2015):912–20. doi:10.1016/j.cej.2015.05.081.
  • Zhang, Z. Z., Y. F. Cheng, Y. H. Zhou, X. Buayi, and R. C. Jin. 2016. Roles of EDTA washing and Ca2+ regulation on the restoration of anammox granules inhibited by copper(II). J. Hazard. Mater. 301:92–99. doi:10.1016/j.jhazmat.2015.08.036.
  • Zhang, Z., J. Peng, C. Srinivasakannan, Z. Zhang, L. Zhang, Y. Fernández, and J. A. Menéndez. 2010. Leaching zinc from spent catalyst: Process optimization using response surface methodology. J. Hazard. Mater. 176 (1–3):1113–17. doi:10.1016/j.jhazmat.2009.11.125.
  • Zou, Z., R. Qiu, W. Zhang, H. Dong, Z. Zhao, T. Zhang, X. Wei, X. Cai, et al. 2009. The study of operating variables in soil washing with EDTA. Environ. Pollut. 157 (1):229–36. doi:10.1016/j.envpol.2008.07.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.