104
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Bacterial distribution in long-term dioxin-contaminated soil in Vietnam and novel dioxin degrading bacteria isolated from Phu Cat airbase

, , &

References

  • Alteio, L. V., F. Schulz, B. R. Seshadri, B. N. Varghese, B. W. Rodriguez-Reillo, E. Ryan, D. Goudeau, S. A. Eichorst, Malmstrom, R. R., R. M. Bowers and L. A. Katzet al.2020Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil LMSystems52 5 e00768-1910.1128/mSystems.00768-19
  • Angel, E.A.D.K., J. Estrada-Casta~neda, and M.C.S. Laura. 2015. Use of bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils. Journal. Environmental Manage 157:213–19. doi:10.1016/j.jenvman.2015.04.026.
  • The Aspen Institute. 2012. “Declaration and Plan of Action U.S. – Vietnam dialogue group on agent orange/Dioxin 2010 - 2019.” The New York Post. https://nypost.com/2017/09/28/agent-orange-is-still-causing-deformities-in-vietnams-babies/.
  • Baxter-Plant, V. S., I. P. Mikheenko, M. Robson, S. J. Harrad, and L. E. Macaskie. 2004. Dehalogenation of chlorinated aromatic compounds using a hybrid bioinorganic catalyst on cells of desulfovibrio desulfuricans. Biotechnological Letter. 26 (24):1885–90. doi:10.1007/s10529-004-6039-x.
  • Briceño, G., M. Soledad Fuentes, J. María Saez, M. Cristina Diez, and C. Susana Benimeli. 2018. Streptomyces genus as biotechnological tool for pesticide degradation in polluted systems. Crit Rev Environmental Science Technology 48 (10–12):773–805. doi:10.1080/10643389.2018.1476958.
  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. Johnson, and S. P. Holmes. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13 (7):581–583. doi:10.1038/nmeth.3869.
  • Chen, W.Y., W. Jer-Horng, and J.E. Chang. 2014. Pyrosequencing analysis reveals high population dynamics of the soil microcosm degrading octachlorodibenzofuran. Microbes and Environments 29 (4):393–400. doi:10.1264/jsme2.ME14001.
  • Chen, W.Y., W. Jer-Horng, S.C. Lin, and J.E. Chang. 2016. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-Amended landfill reactors under hypoxic conditions. Journal of Hazardous Materials 312:159–68. doi:10.1016/j.jhazmat.2016.03.060. Contents.
  • Chen, W. Y., W. Jer Horng, Y. Yu Lin, H. Jun Huang, and J. En Chang. 2013. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-Dioxins and dibenzofurans: Microcosm study and microbial community analysis. Journal Hazards Materials 261:351–61. doi:10.1016/j.jhazmat.2013.07.039.
  • Colquhoun, D. R., E. M. Hartmann, and A. U. Halden. 2012. Proteomic profiling of the dioxin-Degrading bacterium sphingomonas wittichii RW1. Journal of Biomedicine and Biotechnology 2012:1–9. doi:10.1155/2012/408690.
  • Effendi1, Y., N. Aini1, A. Pambudi, and H. Y. Sasaerila 2020. “Metagenomics analysis of soil microbial communities in plant agroforestry system rubber tree (Hevea Brasiliensis) – Ganyong (Canna Sp.)” 468: 012045. 1 10.1088/1755-1315/468/1/012045
  • Eiben, V. B. U., Eiben, and S. Sabine. 2006. Cytochrome P450 monooxygenases: Perspectives for synthetic application. Trends Biotechnology 24 (7):324–30. doi:10.1016/j.tibtech.2006.05.002.
  • Field, J. A., and R. Sierra-Alvarez. 2008. Microbial degradation of chlorinated dioxins. Chemosphere 71 (6):1005–18. doi:10.1016/j.chemosphere.2007.10.039.
  • Fierer, N., J. W. Leff, B. J. Adams, U. N. Nielsen, S. Thomas Bates, C. L. Lauber, S. Owens, J. A. Gilbert, D. H. Wall, and J. Gregory Caporaso. 2012. “Cross-Biome metagenomic analyses of soil microbial communities and their functional attributes.” Proceedings of the National Academy of Sciences of the United States of America. 10.1073/pnas.1215210110.
  • Gangola, S., A. Sharma, S. Joshi, G. Bhandari, O. Prakash, M. Govarthanan, W. Kim, and P. Bhatt. 2022. Novel mechanism and degradation kinetics of pesticides mixture using bacillus Sp. Strain 3C in contaminated sites saurabh. Pestic Biochem Physiol 181:104996. doi:10.1016/j.pestbp.2021.104996.
  • Gourmelon, V., L. Maggia, J. R. Powell, S. Gigante, S. Hortal3, C. Gueunier, K. Letellier1, and F. Carriconde. 2016. Environmental and geographical factors structure soil microbial diversity in new Caledonian ultramafic substrates: A metagenomic approach. PLoS ONE 11 (12):e0167405. doi:10.1371/journal.pone.0167405.
  • Gupta, S., M. S. Mortensen, S. Schjørring, U. Trivedi, G. Vestergaard, J. Stokholm, H. Bisgaard, K. A. Krogfelt, and S. J. Sørensen. 2019. Amplicon sequencing provides more accurate microbiome information in healthy children compared to culturing. Communications Biology 2 (1):291. doi:10.1038/s42003-019-0540-1.
  • Hanano, A., M. Shaban, D. Almutlk, and I. Almousally. 2019. The Cytochrome P450BM-1 of Bacillus Megaterium A14K is Induced by 2,3,7,8-Tetrachlorinated Dibenzo-p-Dioxin: Biophysical, molecular and biochemical determinants abdulsamie. Chemosphere 216:258–70. doi:10.1016/j.chemosphere.2018.10.103.
  • Han, Z., Q. Lin, S. Zhang, X. Zhou, S. Li, F. Sun, C. Shen, and S. Xiaomei. 2023. High PCBs mineralization capability of a resuscitated strain bacillus Sp. LS1 and Its Survival in PCB-Contaminated soil. Science of the Total Environment Journal 856:159224. doi:10.1016/j.scitotenv.2022.159224.
  • Hiraishi, A. 2003. Biodiversity of Dioxin-Degrading microorganisms and potential utilization in bioremediation. Microbes and Environments 18 (3):105–25. doi:10.1264/jsme2.18.105.
  • Hiraishi, A. 2008. Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/Dioxin dechlorinators. Microbes and Environments 23 (1):1–12. doi:10.1264/jsme2.23.1.
  • Huang, W.Y., H.H. Ngo, C. Lin, V. Chi-Thanh, A. Kaewlaoyoong, T. Boonsong, X.T.B. Huu-TuanTran, V. Thi-Dieu-Hien, J.R. Chen, and J. -R. Chen. 2019. Aerobic Co-Composting degradation Of highly PCDD/F-Contaminated field soil. A study of bacterial community. Science of the Total Environment Journal 660:595–602. doi:10.1016/j.scitotenv.2018.12.312.
  • Iida, T., K. Nakamura, A. Izumi, Y. Mukouzaka, and T. Kudo. 2006. Isolation and characterization of a gene cluster for Dibenzofuran Degradation in a New Dibenzofuran-Utilizing bacterium, paenibacillus Sp. Strain YK5. Architecture Microbiological 184 (5):305–15. doi:10.1007/s00203-005-0045-9.
  • Ka¨mpfer, P., and R. Rossello´-Mora. 2004. The species concept for prokaryotic microorganisms— an Obstacle for describing diversity? Poiesis & Praxis 3 (1–2):62–72. doi:10.1007/s10202-004-0068-3.
  • Kubota, M., K. Kawahara, K. Sekiya, T. Uchida, Y. Hattori, H. Futamata, and A. Hiraishi. 2005. Nocardioides aromaticivorans Sp. Nov., a Dibenzofuran-Degrading bacterium isolated from dioxin-Polluted environments. System Application Microbiological 28 (2):165–74. doi:10.1016/j.syapm.2004.10.002.
  • Kumar, V., and I. S. Thakur, ed. 2022. Omics Insights in Environmental Bioremediation. Singapore: Springer Singapore.
  • Mandree, P., W. Masika, J. Naicker, G. Moonsamy, S. Ramchuran, and R. Lalloo. 2021. Bioremediation of polycyclic aromatic hydrocarbons from industry contaminated soil using indigenous bacillus spp. Processes 9 (9):1606. doi:10.3390/pr9091606.
  • Mishra, S., Z. Lin, S. Pang, W. Zhang, P. Bhatt, and S. Chen. 2021. Recent advanced technologies for the characterization of xenobiotic-Degrading microorganisms and microbial communities. Frontiers in Bioengineering and Biotechnology 9 (February). doi: 10.3389/fbioe.2021.632059.
  • Mohd-Yusof, N. S., M. Abu Bakar Abdul-Latiff, A. Rahman Mohd-Ridwan, A. Sakinah Badrulisham, N. Othman, S. Yaakop, S. Md-Nor, and B. Munir Md-Zain. 2022. first report on metabarcoding analysis of gut microbiome in island flying fox (Pteropus Hypomelanus) in Island Populations of Malaysia. Biodiversity Data Journal 10. doi:10.3897/BDJ.10.E69631.
  • Nam, I.H., Y.M. Kim, and S. Schmidt, Applied and Environmental. Microbiology. Y.S. Chang. 2006. Biotransformation of 1,2,3-Tri- and 1,2,3,4,7,8-Hexachlorodibenzo-p- Dioxin by Sphingomonas Wittichii Strain RW1. Applied and Environmental. Microbiology. 72 (1):112–16. doi:10.1128/AEM.72.1.112-116.2006.
  • Nguyen, T. T. 2009. Environmental consequences of dioxin from the war in Vietnam: What has been done and what else could be done? International Journal Environmental Studies 66 (1):9–26. doi:10.1080/00207230902757321.
  • Nguyen, T. L. A., and * Ha Thi Cam Dang, Ton That Huu Dat 3, Bernd W. Brandt 4, Wilfred F. M. Röling 1†, Abraham Brouwer 5, and and Rob J. M. van Spanning. 2022. Correlating Biodegradation Kinetics of 2,3,7,8- Tetrachlorodibenzo-p-Dioxin to the dynamics of microbial communities originating from soil in Vietnam contaminated with herbicides and dioxins. Front Microbiological 13:923432. doi:10.3389/fmicb.2022.923432.
  • Nguyen, T. L. A., H. T. C. Dang, J. Koekkoek, M. Braster, O. Parsons, A. Brouwer, T. de Boer, and R. vanSpanning. 2021. Species and metabolic pathways involved in bioremediation of Vietnamese soil from bien hoa airbase contaminated with herbicides. Frontiers in Sustainable Cities 3:692018. doi:10.3389/frsc.2021.692018.
  • Pham Quang, H., N. Kim Thoa, and D. Thi Cam Ha. 2020. Diversity of reductive dechlorinating bacteria and archaea in herbicide/Dioxin-Contaminated soils from bien hoa airbase using metagenomic approach. Vietnam Journal of Biotechnology 18 (4):773–84. doi:10.15625/1811-4989/18/4/15799.
  • Rachel, P., L. M. Rodriguez-R, C. Luo, D. Tsementzi, and K. T. Konstantinidis. 2014. Strengths and limitations of 16S RRNA Gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9 (4):e93827. doi:10.1371/journal.pone.0093827.
  • Romeh, A. A., and M. Y. Hendawi. 2014. Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) Polymyxa (Prazmowski) and Azospirillum Lipoferum (Beijerinck). Journal Agricultural Science Technology 16 (2): 265–276.
  • Sabrin, M., G. Mansour, and H. Abdulsamie. 2022. Compositional, genetic and functional characterization of soil culturable microbial communities in polychlorinated dibenzo-p-Dioxins/Furans contaminated soil. Frontiers in Environmental Science 10:1008900. doi:10.3389/fenvs.2022.1008900.
  • Saibu, S., S. A. Adebusoye, G. O. Oyetibo, and D. F. Rodrigues. 2020. Aerobic degradation of dichlorinated Dibenzo-p-Dioxin and dichlorinated dibenzofuran by bacteria strains obtained from tropical contaminated soil. Biodegradation 31 (1–2):123–37. doi:10.1007/s10532-020-09898-8.
  • Sulistyaningdyah, W. T., J. Ogawa, L. Qing Shan, R. Shinkyo, T. Sakaki, K. Inouye, R. D. Schmid, and S. Shimizu. 2004. Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM-3 and Its mutant. Biotechnology Letter 26 (24):1857–60. doi:10.1007/s10529-004-5317-y.
  • Thanh, L. T. H., T. Vu Ngoc Thi, M. Shintani, R. Moriuchi, H. Dohra, N. Hoang Loc, and K. Kimbara. 2019. Isolation and characterization of a moderate thermophilic paenibacillus naphthalenovorans Strain 4B1 capable of degrading dibenzofuran from dioxin-Contaminated soil in Vietnam. Journal Bioscience Bioengineering 128 (5):571–77. doi:10.1016/j.jbiosc.2019.05.006.
  • Tran, H., H. Nguyen, T. Nguyen, C. Chang, W. Huang, C. Huang, and T. Chiang. 2022. Microbial communities along 2,3,7,8‑tetrachlorodibenzodioxin concentration gradient in soils polluted with agent orange based on metagenomic analyses. Microbiology Ecological 85: 197–208. doi:10.1007/s00248-021-01953-y.
  • United States Agency for International Development. 2016. “Environmental Assessment of Dioxin Contamination at Bien Hoa Airbase.”
  • Vineet, K., I. Shekhar Thakur, and M. P. Shah. 2020. Microbial bioremediation & Biodegradation. Springer. doi:10.1007/978-981-15-1812-6_1.
  • Wittich, R. M., H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel. 1992. Metabolism of Dibenzo-p-Dioxin by Sphingomonas Sp. Strain RW1. Application Environmental Microbiological 58 (3):1005–10. doi:10.1128/aem.58.3.1005-1010.1992.
  • Yoshida, N., N. Takahashi, and A. Hiraishi. 2005. Phylogenetic Characterization of a Polychlorinated-Dioxin-Dechlorinating microbial community by use of microcosm studies. Application Environmental Microbiological 71 (8):4325–34. doi:10.1128/AEM.71.8.4325-4334.2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.