147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mobility Study of TiO2 Nanoparticles in Soil and Their Impact on Soil Nutrients

ORCID Icon, & ORCID Icon

References

  • Adams, L. K., D. Y. Lyon, and P. J. J. Alvarez. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Reserach 40 (19):3527–32. doi:10.1016/j.watres.2006.08.004.
  • Adrian, Y. F., U. Schneidewind, S. A. Bradford, J. Šimůnek, E. Klumpp, and R. Azzam. 2019. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter. Environ. Pollut. 255:113124. doi:10.1016/j.envpol.2019.113124.
  • Ahmed, B., M. Saghir Khan, and J. Musarrat. 2018. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Environmental Pollution 240:802–16. doi:10.1016/j.envpol.2018.05.015.
  • Alprol, A. E., M. S. Gaballah, and M. A. Hassaan. 2021. Micro and nanoplastics analysis: Focus on Their classification, sources, and impacts in Marine environment. Regional Studies in Marine Science 42:101625. doi:10.1016/j.rsma.2021.101625.
  • Arshad, M., S. Nisar, I. Gul, U. Nawaz, S. Irum, S. Ahmad, H. Sadat, I. A. Mian, S. Ali, M. Rizwan, et al. 2021. Multi-Element Uptake and growth responses of rice (Oryza Sativa L.) to TiO2 nanoparticles applied in different textured soils. Ecotoxicology Environmental Safe 215:112149. doi:https://doi.org/10.1016/j.ecoenv.2021.112149.
  • Ashok, C., and K. Venkateswara Rao. 2014. ZnO/TiO2 nanocomposite rods synthesised by microwave-assisted method for humidity sensor application. Superlattices And Microstructures 76:46–54. doi:10.1016/j.spmi.2014.09.029.
  • Belal, E.S., and H. El-Ramady. 2016. Nanoparticles in Water, Soils and Agriculture.
  • Bouyoucos, G. J. 1962. The hydrometer method improved for making particle size analyses of soils. Agron J. 54:464–65.
  • Devallois, V. 2009. “Transferts et Mobilite Des Elements Traces Metalliques Dans La Colonne Sedimentaire Des Hydrosystemes Continentaux,” 304.
  • De Volder, M., S. Tawfick, and A. John Hart. 2013. Carbon nanotubes: Present and future commercial applications. Science. 339(6119):535–39. no. March 2014. doi:10.1126/science.1222453.
  • Djibril Sekou, K., and H. Patel.2022. A Review on the interaction between nanoparticles and toxic metals in soil: Meta-analysis of their effects on soil, plants and human health. Soil & Sediment Contamination: International Journal. 32(4):1–31. July. doi: 10.1080/15320383.2022.2096564.
  • Ermolin, M. S., N. N. Fedyunina, V. K. Karandashev, and P. S. Fedotov. 2019. Study of the mobility of cerium oxide nanoparticles in soil using dynamic extraction in a microcolumn and a rotating coiled column. Journal Of Analytical Chemistry++ 74 (8):825–33. doi:10.1134/S1061934819080070.
  • Fasake, V., W. Elmer, Z. Javed, K. Dashora, M. Mishra, V. D. Fasake, and A. Srivastva. n.d. “Effect of Accumulation of Nanoparticles in Soil Health-a Concern on Future Effect of Accumulation of Nanoparticles in Soil Health- a Concern on Future.”
  • Fisinin, V. I., S. A. Miroshnikov, E. A. Sizova, A. S. Ushakov, and E. P. Miroshnikova. 2018. Metal particles as trace-element sources: current state and future prospects. World’s Poultry Science Journal 74 (3):523–40. doi:10.1017/S0043933918000491.
  • Fröhlich, E. 2018. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artificial Cells, Nanomedicine Biotechnology 46 (sup2):1091–107. doi:10.1080/21691401.2018.1479709.
  • Gogos, A., J. Moll, F. Klingenfuss, M. Heijden, F. Irin, M. J. Green, R. Zenobi, and T. D. Bucheli. 2016. Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. Journal of Nanobiotechnology 14 (1):1–11. doi:10.1186/s12951-016-0191-z.
  • Gottschalk, F., and B. Nowack. 2011. The release of engineered nanomaterials to the environment. Journal Of Environmental Monitoring 13 (5):1145–55. doi:10.1039/c0em00547a.
  • Husen, A., and M. Iqbal. 2019. Nanomaterials and plant potential: An overview. Nanomaterials And Plant Potential. doi:10.1007/978-3-030-05569-1_1.
  • Jianzhou, H., D. Wang, and D. Zhou. 2019. Transport and Retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating. Science Total Environmental 648 (August):102–08. doi:10.1016/j.scitotenv.2018.08.136.
  • Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal Of Chemistry 12 (7):908–31. doi:10.1016/j.arabjc.2017.05.011.
  • Lehner, R., C. Weder, A. Petri-Fink, and B. Rothen-Rutishauser. 2019. Emergence of nanoplastic in the environment and possible impact on human health. Review-Article Environmental Science And Technology 53 (4):1748–65. doi:https://doi.org/10.1021/acs.est.8b05512.
  • Liang, Y., S. A. Bradford, J. Simunek, M. Heggen, H. Vereecken, and E. Klumpp. 2013. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil retention and remobilization. Environmental Science & Technology 47 (21):12229–37. doi:10.1021/es402046u.
  • Liang, Y., S. Bradford, J. Simunek, H. Vereecken, and E. Klumpp. 2013. Transport and retention of stabilized silver nanoparticles in water-saturated porous media. Environmental Science & Technology 15: https://vpngateway.udg.edu/doi/abs/10.1021/,DanaInfo=pubs.acs.org+es402046u.
  • Liang, Y., Y. Luo, L. Zhiwei, E. Klumpp, C. Shen, and S. A. Bradford. 2021. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modi Fi cation of grain surface morphology. Environmental Pollution 276:116661. doi:10.1016/j.envpol.2021.116661.
  • Mahdi, K. N. M., R. J. B. Peters, E. Klumpp, S. Bohme, M. van der Ploeg, C. Ritsema, and V. Geissen. 2017. Silver nanoparticles in soil: aqueous extraction combined with single-particle ICP-MS for detection and characterization. Environmental Nanotechnology, Monitoring And Management 7:24–33. doi:10.1016/j.enmm.2016.12.002.
  • Mahdi, K. N. M., R. Peters, M. van der Ploeg, C. Ritsema, and V. Geissen. 2018. Tracking the transport of silver nanoparticles in soil: A saturated column experiment. Water Air Soil Pollution. 229(10). 10. doi:https://doi.org/10.1007/s11270-018-3985-9.
  • Marie, S., J. M. F. Martins, X. Le Roux, G. Uzu, A. Calas, and A. Richaume. 2017. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships. Nanotoxicology 11 (2):247–55. doi:10.1080/17435390.2017.1290845.
  • Mengestab, T. 2015. “Fate and transport of nano-TiO 2 in saturated porous media: Effect of PH, ionic strength and flow rate layer,” no. 312: 38.
  • Nadir, S., R. Gooneratne, J. Cavanagh, A. K. M. M. H. Craig Bunt, S. Gaw, and B. Robinson. 2019. The mobility of silver nanoparticles and silver ions in the soil-plant system. Journal Environmental Quality 48 (6):1835–41. doi:10.2134/jeq2019.03.0098.
  • Patel, H., L. M. Manocha, and S. Manocha. 2014. Synthesis and microstructure analysis of aligned carbon nanotube/pyrocarbon composites. Xinxing Tan Cailiao/New Carbon Materials 29 (5):374–79. doi:10.1016/S1872-5805(14)60143-8.
  • Philippe, A., D. Armando Campos, J.M. Guigner, and C. Buchmann. 2018. “Characterisation of the natural colloidal TiO2 background in soil characterization of the natural colloidal TiO 2 background in soil. Separations. 5(4):50. no. October. doi:10.3390/separations5040050.
  • Rahmatpour, S., M. Reza, M. Shirvani, and J. Šimůnek. 2018. Geoderma transport of silver nanoparticles in intact columns of calcareous soils: The role of flow conditions and soil texture. Geoderma 322 (February):89–100. doi:10.1016/j.geoderma.2018.02.016.
  • Rai, P. K., V. Kumar, S. Soo Lee, N. Raza, K. Hyun Kim, O. Yong Sik, and D. C. W. Tsang. 2018. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environmental International 119 (June):1–19. doi:10.1016/j.envint.2018.06.012.
  • Ramana, S., A. Kumar Tripathi, A. Kumar, A. Bahadur Singh, K. Bharati, A. Sahu, P. Singh Rajput, J. K. Saha, S. Srivastava, P. Dey, et al. 2021. Potential of cotton for remediation of Cd-contaminated soils. Environmental Monitoring and Assessment 193 (4). doi: 10.1007/s10661-021-08976-5.
  • Rao, K. G. 2016. Green Synthesis of TiO 2 Nanoparticles Using Hibiscus Flower Extract 2:28–34.
  • Rastogi, A., M. Zivcak, O. Sytar, H. M. Kalaji, H. Xiaolan, S. Mbarki, and M. Brestic. 2017. Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry 5 (October):1–16. doi:10.3389/fchem.2017.00078.
  • Sagee, O., I. Dror, and B. Berkowitz. 2012. Chemosphere transport of silver nanoparticles (AgNps) in soil. Chemosphere 88 (5):670–75. doi:10.1016/j.chemosphere.2012.03.055.
  • Sangani, F., G. O. Mahmood, and A. Fotovat. 2019. Transport of engineered nanoparticles in soils and aquifers. Environmental Reviews 27 (1):43–70. doi:10.1139/er-2018-0022.
  • Shakeel, M., F. Jabeen, S. Shabbir, M. S. Asghar, M. S. Khan, and A. S. Chaudhry. 2016. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: A review. Biol. Trace Elem. Res. 172 (1):1–36. doi:10.1007/s12011-015-0550-x.
  • Sharma, V. K., C. M. Sayes, B. Guo, S. Pillai, J. G. Parsons, C. Wang, B. Yan, and M. Xingmao. 2019. Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Science Total Environmental 653:1042–51. doi:10.1016/j.scitotenv.2018.10.411.
  • Shuang, X., C. Shen, X. Zhang, X. Chen, M. Radosevich, S. Wang, and J. Zhuang. 2020. Mobility of cellulose nanocrystals in porous media: Effects of ionic strength, iron oxides, and soil colloids. Nanomaterials 10 (2):1–15. doi:10.3390/nano10020348.
  • Turan, N. B., H. Sari Erkan, G. Onkal Engin, and M. Sinan Bilgili. 2019. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—a review. Process Safety And Environmental Protection 130:238–49. doi:10.1016/j.psep.2019.08.014.
  • Wang, D., S. Chunming, W. Zhang, X. Hao, L. Cang, Y. Wang, and D. Zhou. 2014. Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (ultisol). Journal Of Hydrology 519 (PB):1677–87. doi:10.1016/j.jhydrol.2014.09.053.
  • Wang, D., D. P. Jaisi, J. Yan, Y. Jin, and D. Zhou. 2015. Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils. Vadose Zone Journal 14 (7):2–13. doi:10.2136/vzj2015.01.0007.
  • Wang, J., Y. Nie, H. Dai, M. Wang, L. Cheng, Z. Yang, S. Chen, G. Zhao, L. Wu, S. Guang, et al. 2019. Parental exposure to TiO2 NPs promotes the multigenerational reproductive toxicity of Cd in Caenorhabditis elegans via bioaccumulation of Cd in germ cells. Environmental Science: Nano. 6(5):1332–42. doi:https://doi.org/10.1039/c8en01042k.
  • Wang, X. T., F. Rui, Y. Zhou, C. Lin Wang, G. Fa Ren, X. Li Wang, and L. Hui. 2021. Occurrence, source apportionment, and carcinogenic risk assessment of polycyclic aromatic hydrocarbons in urban road dusts in Shanghai. Environmental Science and Pollution Research 28 (46):2–3. doi:10.1007/s11356-021-15532-8.
  • Williams, R. J., S. Harrison, V. Keller, J. Kuenen, S. Lofts, A. Praetorius, C. Svendsen, L. C. Vermeulen, and J. van Wijnen. 2019. Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion In Environmental Sustainability 36:105–15. doi:10.1016/j.cosust.2018.11.002.
  • Xiaomin, L., Q. Ma, T. Liu, Z. Dong, and W. Fan. 2020. Effect of TiO2-nanoparticles on copper toxicity to bacteria: Role of bacterial surface. RSC Advances 10 (9):5058–65. doi:10.1039/c9ra08270k.
  • Yuanyuan, Z., Y. Rui Leu, R. J. Aitken, and M. Riediker. 2015. Inventory of engineered nanoparticle-containing consumer products available in the Singapore retail market and likelihood of release into the aquatic environment. International Journal Of Environmental Research Public Health 12 (8):8717–43. doi:10.3390/ijerph120808717.
  • Zamri, M. F. M. A., M. Anuar Kamaruddin, M. Suffian Yusoff, H. Abdul Aziz, and K. Yuen Foo. 2017. Semi-Aerobic Stabilized Landfill Leachate Treatment by Ion Exchange Resin: Isotherm and Kinetic Study. Appl. Water Sci. 7 (2):581–90. doi:10.1007/s13201-015-0266-2.
  • Zhang, R., T. Chen, H. Zhang, and Y. Luo. 2020. Stability and transport of titanium dioxide nanoparticles in three variable-charge soils. Journal Of Soils & Sediments 20 (3):1395–403. doi:10.1007/s11368-019-02509-x.
  • Zhang, Y., and X. Xiaojie. 2020. Machine learning band gaps of doped-TiO2Photocatalysts from structural and morphological parameters. ACS Omega 5 (25):15344–52. doi:10.1021/acsomega.0c01438.
  • Zhou, P., M. Adeel, N. Shakoor, M. Guo, Y. Hao, I. Azeem, L. Mingshu, M. Liu, and Y. Rui. 2021. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials 11 (1):1–18. doi:10.3390/nano11010026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.