68
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Stubble Burning Effect On Soil’s Dielectric Behavior: An Exploration Of Machine Learning-Based Modelling Approaches

&

References

  • Abdurrahman, M. I., S. Chaki, and G. Saini. 2020. Stubble burning: Effects on health & environment, regulations and management practices. Adv. Environ 2:100011. doi:10.1016/j.envadv.2020.100011.
  • AOAC. 1998. Official methods of analysis, Vol. 52, 16th ed., Association of Official Agricultural Chemists.
  • Arunrat, N., S. Sereenonchai, P. Kongsurakan, C. B. Iwai, M. Yuttitham, and R. Hatano. 2023. Post-fire recovery of soil organic carbon, soil total nitrogen, soil nutrients, and soil erodibility in rotational shifting cultivation in Northern Thailand. Front. Environ. Sci 11:1117427. doi:10.3389/fenvs.2023.1117427.
  • Arunrat, N., S. Sereenonchai, C. Sansupa, P. Kongsurakan, and R. Hatano. 2023. Effect of rice straw and stubble burning on soil physicochemical properties and bacterial communities in central Thailand. Biology 12 (4):501. doi:10.3390/biology12040501.
  • Bajracharya, S. B., A. Mishra, A. Maharjan, and P. Pardha-Saradhi. 2021. Determinants of crop residue burning practice in the Terai region of Nepal. PLoS One 16 (7):e0253939. doi:10.1371/journal.pone.0253939.
  • Behari, J. 2005. Dielectric behavior of soil, 22–40. Netherland: Springer.
  • Bhuvaneshwari, S., H. Hettiarachchi, and J. N. Meegoda. 2019. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Res. 16 (5):832. doi:10.3390/ijerph16050832.
  • Blake, G. R. 1965. Bulk density. Methods of soil analysis: Part 1 physical and mineralogical properties. Including Stat. Meas. Sampling 9:374–90.
  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 2017. Classification and regression trees. Routledge dict. doi:10.1201/9781315139470.
  • Brungard, C. W., J. L. Boettinger, M. C. Duniway, S. A. Wills, and T. C. Edwards Jr. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239:68–83. doi:10.1016/j.geoderma.2014.09.019.
  • Carvalho, J., J. P. V. Santos, R. T. Torres, F. Santarém, and C. Fonseca. 2018. Tree-based methods: Concepts, uses and limitations under the framework of resource selection models. J. Environ. Inform 32 (2). doi:10.3808/jei.201600352.
  • Chatterjee, P. 2018. Impact of practice of stubble burning in environment. A socio legal study, Vol. 437147, 1–9. Munich: GRIN Verlag.
  • Chauhan, B. S., G. Mahajan, V. Sardana, J. Timsina, and M. L. Jat. 2012. Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: Problems, opportunities, and strategies. Adv. Agron. 117:315–69.
  • Cortes, C., and V. Vapnik. 1995. Support-vector networks. Mach. Learn 20 (3):273–97. doi:10.1007/BF00994018.
  • Crow, W. T., A. A. Berg, M. H. Cosh, A. Loew, B. P. Mohanty, R. Panciera, J. P. Walker, D. Ryu, and J. P. Walker. 2012. Upscaling sparse ground‐based soil moisture observations for the validation of coarse‐resolution satellite soil moisture products. Rev. Geophys. 50 (2). doi:10.1029/2011RG000372.
  • Curtis, J. O., C. A. Weiss Jr, and J. B. Everett. 1995. Effect of soil composition on complex dielectric properties. USA: Army Engineer Waterways Experiment Station Vicksburg Ms Environmental Lab.
  • Dauerman, L., G. Windgasse, Y. He, and Y. Lu (1992, August). Microwave treatment of hazardous wastes: Feasibility studies. APMC, Adelaide, SA, Australia, (Vol. 1, pp. 155–57). IEEE.
  • DeCoste, D., and B. Schölkopf. 2002. Training invariant support vector machines mach. Learn 46 (1):161–90. doi:10.1023/A:1012454411458.
  • Ellison, W. J., and J. M. Moreau. 2008. Open-ended coaxial probe. IEEE Trans. Instrum. Meas. 57 (9):1984–91. doi:10.1109/TIM.2008.917683.
  • Ferguson, R. B., G. W. Hergert, C. A. Shapiro, and C. S. Wortmann. 2007. Guidelines for soil sampling. In NebGuide G1740. USA: UNL, University of Nebraska–Lincoln, USA.
  • Gangwar, K. S., K. K. Singh, S. K. Sharma, and O. K. Tomar. 2006. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Tillage Res. 88 (1–2):242–52. doi:10.1016/j.still.2005.06.015.
  • Gershman, S. J., and D. M. Blei. 2012. A tutorial on Bayesian nonparametric models. J. Math. Psychol. 56 (1):1–12. doi:10.1016/j.jmp.2011.08.004.
  • Granged, A. J., L. M. Zavala, A. Jordán, and G. Bárcenas-Moreno. 2011. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma 164 (1–2):85–94. doi:10.1016/j.geoderma.2011.05.017.
  • Håkansson, I., and W. B. Voorhees. 2020. Soil compaction. In Methods for assessment of soil degradation, 167–79. CRC Press.
  • Han, J., K. Mao, T. Xu, J. Guo, Z. Zuo, and C. Gao. 2018. A soil moisture estimation framework based on the CART algorithm and its application in China. J. Hydrol. 563:65–75. doi:10.1016/j.jhydrol.2018.05.051.
  • Hänsch, R., T. Jagdhuber, and B. Fersch. 2020. Soil-permittivity estimation under grassland using machine-learning and polarimetric decomposition techniques. IEEE Trans. Geosci. Remote Sens 59 (4):2877–87. doi:10.1109/TGRS.2020.3010104.
  • Hesse, P. R., and P. R. Hesse. 1971. Cambridge University Press.
  • Huang, G. Y., L. Zhao, Y. H. Dong, and Q. Zhang. 2011. Remediation of soils contaminated with polychlorinated biphenyls by microwave-irradiated manganese dioxide. J. Hazard. Mater. 186 (1):128–32. doi:10.1016/j.jhazmat.2010.10.092.
  • Ivezić, V., D. Kraljević, Z. Lončarić, M. Engler, D. Kerovec, V. Zebec, and J. Jović 2016, February. Organic matter determined by loss on ignition and potassium dichromate method. In 51st Croatian and 11th International Symposium on Agriculture, Opatija, Croatia (Vol. 36, p. 40).
  • Jackson, M. L. 2005. Soil chemical analysis: Advanced course. Madison, WI: UW-Madison Libraries parallel press.
  • Jain, N., A. Bhatia, and H. Pathak. 2014. Emission of air pollutants from crop residue burning in India, Aerosol air qual. Aerosol Air Qual. Res. 14 (1):422–30. doi:10.4209/aaqr.2013.01.0031.
  • Jordan, M. I., and T. M. Mitchell. 2015. Machine learning: Trends, perspectives, and prospects. Sci 349 (6245):255–60. doi:10.1126/science.aaa8415.
  • Jury, W. A., and R. Horton. 2004. Soil phy. New York, USA: John Wiley & Sons.
  • Kaatze, U. 1989. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data 34 (4):371–74. doi:10.1021/je00058a001.
  • Kanabkaew, T., and N. T. Kim Oanh. 2011. Development of spatial and temporal emission inventory for crop residue field burning. Environ. Model. Assess. 16 (5):453–64. doi:10.1007/s10666-010-9244-0.
  • Kaur, M., D. P. Malik, G. S. Malhi, V. Sardana, N. S. Bolan, R. Lal, and K. H. Siddique. 2022. Rice residue management in the Indo-Gangetic Plains for climate and food security. A review. Agron. Sustain. Dev. 42 (5):1–25. doi:10.1007/s13593-022-00817-0.
  • Kim Oanh, N. T., D. A. Permadi, N. P. Dong, and D. A. Nguyet. 2018. Emission of toxic air pollutants and greenhouse gases from crop residue open burning in Southeast Asia. In Land-atmospheric research applications in South and Southeast Asia, 47–66. Springer, Cham. doi:10.1007/978-3-319-67474-2_3.
  • Kulpa, K. S., P. Samczyński, M. Malanowski, A. Gromek, D. Gromek, W. Gwarek, G. Tański, and G. Tanski. 2014. An advanced SAR simulator of three-dimensional structures combining geometrical optics and full-wave electromagnetic methods. IEEE Trans. Geosci. Remote Sens 52 (1):776–84. doi:10.1109/TGRS.2013.2283267.
  • Liang, J., X. Liu, and K. Liao. 2017. Soil moisture retrieval using UWB echoes via fuzzy logic and machine learning. IEEE Internet Things J. 5 (5):3344–52. doi:10.1109/JIOT.2017.2760338.
  • Lim, J. S., Z. A. Manan, S. R. W. Alwi, and H. Hashim. 2012. A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy. Rev 16 (5):3084–94. doi:10.1016/j.rser.2012.02.051.
  • Lin, M., and T. Begho. 2022. Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses. J. Environ. Manage. 314:115104. doi:10.1016/j.jenvman.2022.115104.
  • Liu, P. W. G., T. C. Chang, C. H. Chen, M. Z. Wang, and H. W. Hsu. 2014. Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils. Inter. Biodeterior. Biodegrad. 95:276–84. doi:10.1016/j.ibiod.2014.05.004.
  • Liu, Z., A. Xu, and B. Long. 2011. Energy from combustion of rice straw: Status and challenges to China. Energy Power Eng. 3 (3):325. doi:10.4236/epe.2011.33040.
  • Mahesh, B. 2020. Machine learning algorithms-a review. IJSR 9:381–86.
  • Ma, Y., B. Minasny, B. P. Malone, and A. B. Mcbratney. 2019. Pedology and digital soil mapping (DSM). Eur. J. Soil Sci 70 (2):216–35. doi:10.1111/ejss.12790.
  • Mann, R. S. 2017. Cropping pattern in Punjab (1966-67 to 2014-15). Econ. Polit. Wkly 52 (3):30–33.
  • Maulud, D., and A. M. Abdulazeez. 2020. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 1 (4):140–47. doi:10.38094/jastt1457.
  • McBratney, A., J. de Gruijter, and A. Bryce. 2019. Pedometrics timeline. Geoderma 338:568–75. doi:10.1016/j.geoderma.2018.11.048.
  • Mehta, P. K. 1989. Pozzolanic and cementitious by-products in concrete–another look. Spec. Publ. 114:1–44.
  • Migo, M. V. P. (2019). Optimization and life cycle assessment of the direct combustion of rice straw using a small scale, stationary grate furnace for heat generation. Unpublished Masters thesis. UPLB.
  • Morgan, J. N., and J. A. Sonquist. 1963. Problems in the analysis of survey data, and a proposal. J. Am. Stat. Assoc. 58 (302):415–34. doi:10.1080/01621459.1963.10500855.
  • National Policy for Management of Crop Residues (NPMCR). 2014. Department of agriculture and cooperation, department of agriculture and cooperation, ministry of agriculture. New Delhi: Government of India.
  • Nawaz, A., M. Farooq, F. Nadeem, K. H. Siddique, and R. Lal. 2019. Rice–wheat cropping systems in South Asia: Issues, options and opportunities. Crop Pasture Sci. 70 (5):395–427. doi:10.1071/CP18383.
  • Nolz, R., and G. Kammerer. 2017. Evaluating a sensor setup with respect to near-surface soil water monitoring and determination of in-situ water retention functions. J. Hydrol. 549:301–12. doi:10.1016/j.jhydrol.2017.04.011.
  • Padarian, J., B. Minasny, and A. B. McBratney. 2020. Machine learning and soil sciences: A review aided by machine learning tools. Soil 6 (1):35–52. doi:10.5194/soil-6-35-2020.
  • Palta, P., P. Kaur, and K. S. Mann. 2022. Dielectric behavior of soil as a function of frequency, temperature, moisture content and soil texture: A deep neural networks based regression model. J. Microw. Power Electromagn. Energy 56 (3):145–67. doi:10.1080/08327823.2022.2103630.
  • Pankaj, P., P. K. Prachi Palta, and K. S. Mann. 2020. Performance of high temperature open-ended coaxial probe for dielectric properties of high loss food materials in frequency range 10-200 MHz. Solid State Technol. 63 (2s).
  • Pankhurst, C., C. Kirkby, B. Hawke, and B. Harch. 2002. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biol. Fert. Soils 35 (3):189–96. doi:10.1007/s00374-002-0459-3.
  • Pansu, M., and J. Gautheyrou. 2006. pH measurement, 551–79. Berlin Heidelberg: Springer.
  • Pedretti, G., C. E. Graves, S. Serebryakov, R. Mao, X. Sheng, M. Foltin, J. P. Strachan, and J. P. Strachan. 2021. Tree-based machine learning performed in-memory with memristive analog CAM. Nat. Commun. 12 (1):1–10. doi:10.1038/s41467-021-25873-0.
  • Porichha, G. K., Y. Hu, K. T. V. Rao, and C. C. Xu. 2021. Crop residue management in India: Stubble burning vs. other utilizations including bioenergy. Energies 14 (14):4281. doi:10.3390/en14144281.
  • Prasad, S., A. Singh, N. E. Korres, D. Rathore, S. Sevda, and D. Pant. 2020. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour. Technol. 303:122964. doi:10.1016/j.biortech.2020.122964.
  • Pregitzer, K. S., M. J. Laskowski, A. J. Burton, V. C. Lessard, and D. R. Zak. 1998. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol. 18 (10):665–70. doi:10.1093/treephys/18.10.665.
  • Seyfried, M. S., and L. E. Grant. 2007. Temperature effects on soil dielectric properties measured at 50 MHz. Vadose Zone J. 6 (4):759–65. doi:10.2136/vzj2006.0188.
  • Singh, J. S., R. Chandra, A. K. Tangri, R. Kumar, I. M. Bahuguna, S. U. Latief, P. Pandey, and S. N. Ali. 2018. Crop residues management in sustainability. Clim. Change 4 (1):1–8. doi:10.3233/JCC-180001.
  • Somasundaram, J., R. S. Chaudhary, D. Awanish Kumar, A. K. Biswas, N. K. Sinha, M. Mohanty, and S. K. Chaudhari, P. Jha, M. Sankar, A. K. Patra. 2018. Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate‐associated carbon in rainfed Vertisols. Eur. J. Soil Sci 69 (5):879–91. doi:10.1111/ejss.12692.
  • Stuchly, M. A., and S. S. Stuchly. 1980. Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies-A review. IEEE Trans. Instrum. Meas. 29 (3):176–83. doi:10.1109/TIM.1980.4314902.
  • Tipayarom, D., and N. K. Oanh. 2007. Effects from open rice straw burning emission on air quality in the Bangkok Metropolitan Region. Sci 33 (3):339–45.
  • Vapnik, V., and O. Chapelle. 2000. Bounds on error expectation for support vector machines. Neural Comput. 12 (9):2013–36. doi:10.1162/089976600300015042.
  • Venkatramanan, V., S. Shah, A. K. Rai, and R. Prasad. 2021. Nexus between crop residue burning, bioeconomy and sustainable development goals over North-Western India. Front. Energy Res. 8:614212. doi:10.3389/fenrg.2020.614212.
  • Verhulst, N., F. Kienle, K. D. Sayre, J. Deckers, D. Raes, A. Limon-Ortega, and L. Tijerina-Chavez, B. Govaerts. 2011. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil. 340 (1–2):453–66. doi:10.1007/s11104-010-0618-5.
  • Weisberg, S. 2005. Applied linear regression. Vol. 528. JWS. doi:10.1002/0471704091
  • Williams, C. K. 1998. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Learning in graphical models, 599–621. Dordrecht: Springer Netherlands. doi:10.1007/978-94-011-5014-9_23.
  • Zhao, Z., A. Weerasinghe, Q. Sun, F. Fan, and K. Y. See. 2021. Improved calibration technique for two-probe setup to enhance its in-circuit impedance measurement accuracy. Measurement 185:110007. doi:10.1016/j.measurement.2021.110007.
  • Zribi, M., N. Baghdadi, and M. Nolin. 2011. Remote sensing of soil. Appl. Environ. Soil Sci. 2011:1–2. doi:10.1155/2011/904561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.