253
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Design and evaluation of scFv-RTX-A as a novel immunotoxin for breast cancer treatment: an in silico approach

, , , , , , , , , & show all

References

  • Heydari, N.; Nikbakhsh, N.; Sadeghi, F.; Farnoush, N.; Khafri, S.; Bastami, M.; Parsian, H. Overexpression of Serum MicroRNA-140-3p in Premenopausal Women with Newly Diagnosed Breast Cancer. Gene. 2018, 655, 25–29. DOI: 10.1016/j.gene.2018.02.032.
  • Hadizadeh, M.; Arani, H. Z.; Olya, M. Expression of Breast Cancer Subtypes Based on the Most Important Biomarkers: Comparison of Clinicopathological Factors and Survival. Iran. Red Crescent Med. J. 2018, 20(1). DOI: 10.5812/ircmj.57931.
  • Eliyatkin, N.; Yalcin, E.; Zengel, B.; Aktas, S.; Vardar, E. Molecular Classification of Breast Carcinoma: From Traditional, Old-Fashioned Way to A New Age, and A New Way. J. Breast Health. 2015, 11(2), 59–66. DOI: 10.5152/tjbh.2015.1669.
  • Goleij Z , Mahmoodzadeh Hosseini H , Amin M , Amani J , Behzadi E, et al. In Silico Evaluation of Two Targeted Chimeric Proteins Based on Bacterial Toxins for Breast Cancer Therapy, Int J Cancer Manag. 2019 ; 12(2):e83315. doi:10.5812/ijcm.83315.
  • Ross, J. S.; Slodkowska, E. A.; Symmans, W. F.; Pusztai, L.; Ravdin, P. M.; Hortobagyi, G. N.; The, H. E. R.-2. Receptor and Breast Cancer: Ten Years of Targeted anti–HER-2 Therapy and Personalized Medicine. oncologist. 2009, 14(4), 320–368. DOI: 10.1634/theoncologist.2008-0230.
  • Wolff, A. C.; Hammond, M. E. H.; Hicks, D. G.; Dowsett, M.; McShane, L. M.; Allison, K. H.; Allred, D. C.; Bartlett, J. M. S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Arch. Pathol. Lab. Med. 2013, 138(2), 241–256.
  • Asif, H. M.; Sultana, S.; Ahmed, S.; Akhtar, N.; Tariq, M. HER-2 Positive Breast Cancer – A Mini-Review. Asian Pac. J. Cancer Prev. 2016, 17(4), 1609–1615. DOI: 10.7314/APJCP.2016.17.4.1609.
  • Gutierrez, C.; Schiff, R. HER2: Biology, Detection, and Clinical Implications. Arch. Pathol. Lab. Med. 2011, 135(1), 55–62.
  • Ross, J. S.; Fletcher, J. A.; Bloom, K. J.; Linette, G. P.; Stec, J.; Symmans, W. F.; Pusztai, L.; Hortobagyi, G. N. Targeted Therapy in Breast Cancer: The HER-2/neu Gene and Protein. Mol. Cell. Proteomics. 2004, 3(4), 379–398.
  • Schechter, A. L.; Stern, D. F.; Vaidyanathan, L.; Decker, S. J.; Drebin, J. A.; Greene, M. I.; Weinberg, R. A. The Neu Oncogene: An erb-B-related Gene Encoding a 185,000-Mr Tumour Antigen. Nature. 1984, 312(5994), 513.
  • Sliwkowski, M. X.;. Ready to Partner. Nat. Struct. Mol. Biol. 2003, 10(3), 158. DOI: 10.1038/nsb0303-158.
  • Tai, W.; Mahato, R.; Cheng, K. The Role of HER2 in Cancer Therapy and Targeted Drug Delivery. J. Controlled Release. 2010, 146(3), 264–275. DOI: 10.1016/j.jconrel.2010.04.009.
  • Roskoski, J. R.;. The ErbB/HER Family of Protein-tyrosine Kinases and Cancer. Pharmacol. Res. 2014, 79, 34–74. DOI: 10.1016/j.phrs.2013.11.002.
  • JÁF, V.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt Signalling Pathway and Cancer. Cancer Treat. Rev. 2004, 30(2), 193–204. DOI: 10.1016/j.ctrv.2003.07.007.
  • Slamon, D. J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy Plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer that Overexpresses HER2. N. Engl. J. Med. 2001, 344(11), 783–792.
  • Liu, Y.; Xu, J.; Choi, H. H.; Han, C.; Fang, Y.; Li, Y.; Van der Jeught, K.; Xu, H.; Zhang, L.; Frieden, M.; et al. Targeting 17q23 Amplicon to Overcome the Resistance to anti-HER2 Therapy in HER2+ Breast Cancer. Nat. Commun. 2018, 9(1), 4718.
  • Gerratana, L.; Bonotto, M.; Bozza, C.; Ongaro, E.; Fanotto, V.; Pelizzari, G.; Puglisi, F. Pertuzumab and Breast Cancer: Another Piece in the anti-HER2 Puzzle. Expert Opin. Biol. Ther. 2017, 17(3), 365–374.
  • Scheuer, W.; Friess, T.; Burtscher, H.; Bossenmaier, B.; Endl, J.; Hasmann, M. Strongly Enhanced Antitumor Activity of Trastuzumab and Pertuzumab Combination Treatment on HER2-positive Human Xenograft Tumor Models. Cancer Res. 2009, 69(24), 9330–9336. DOI: 10.1158/0008-5472.CAN-08-4597.
  • Better, M.; Chang, C. P.; Robinson, R. R.; Horwitz, A. H. Escherichia Coli Secretion of an Active Chimeric Antibody Fragment. Science. 1988, 240(4855), 1041–1043. DOI: 10.1126/science.3285471.
  • Damle, B.; Hollenbaugh, D.; Timoszyk, J.; Tay, L.; Kaul, S. Development of an Immunoassay for BMS-191352, a Single-chain Immunotoxin, and Its Application to Toxicokinetic Studies. J. Immunoassay Immunochem. 1998, 19(2–3), 145–165.
  • Chen, H.-X.; He, F.; Sun, Y.; Luo, Y.; Qiu, H.-J.; Zhang, X.-Y.; Sutton, B. J. Generation and Characterization of Chicken-sourced Single-chain Variable Fragments (Scfvs) against Porcine Interferon-gamma (pIFN-γ). J. Immunoassay Immunochem. 2015, 36(1), 27–44.
  • Ahmad, Z. A.; Yeap, S. K.; Ali, A. M.; Ho, W. Y.; Alitheen, N. B. M.; Hamid, M. scFv Antibody: Principles and Clinical Application. Clin. Dev. Immunol. 2012, 2012, 1–15. DOI: 10.1155/2012/980250.
  • Whitlow, M.; Filpula, D. Single-chain Fv Proteins and Their Fusion Proteins. Methods. 1991, 2(2), 97–105. DOI: 10.1016/S1046-2023(05)80209-9.
  • Arnst, K.; Studennikov, A.; Ustinov, V.; Glushkov, A. Isolation, Production, and Characterization of a New Single Chain Anti-idiotypic Antibody against Benzo [A] Pyrene. J. Immunoassay Immunochem. 2017, 38(6), 652–662. DOI: 10.1080/15321819.2017.1384390.
  • Becker, N.; Benhar, I. Antibody-based Immunotoxins for the Treatment of Cancer. Antibodies. 2012, 1(1), 39–69. DOI: 10.3390/antib1010039.
  • Fang, J.; Xiao, L.; Joo, K. I.; Liu, Y.; Zhang, C.; Liu, S.; Conti, P. S.; Li, Z.; Wang, P. A Potent Immunotoxin Targeting Fibroblast Activation Protein for Treatment of Breast Cancer in Mice. Int. J. Cancer. 2016, 138(4), 1013–1023.
  • Weigel, K. J.; Shen, L.; Thomas, C. L.; Alber, D.; Drapalik, L.; Schafer, Z. T.; Lee, S. W. Design and Evaluation of a Peptide-based Immunotoxin for Breast Cancer Therapeutics. FEBS Open Bio. 2015, 5(1), 202–208.
  • Monastyrnaya, M.; Leychenko, E.; Isaeva, M.; Likhatskaya, G.; Zelepuga, E.; Kostina, E.; Trifonov, E.; Nurminski, E.; Kozlovskaya, E. Actinoporins from the Sea Anemones, Tropical Radianthus Macrodactylus and Northern Oulactis Orientalis: Comparative Analysis of Structure–function Relationships. Toxicon. 2010, 56(8), 1299–1314.
  • Fedorov, S.; Dyshlovoy, S.; Monastyrnaya, M.; Shubina, L.; Leychenko, E.; Kozlovskaya, E.; Jin, J.-O.; Kwak, J.-Y.; Bode, A. M.; Dong, Z.; et al. The Anticancer Effects of Actinoporin RTX-A from the Sea Anemone Heteractis Crispa (=radianthus Macrodactylus). Toxicon. 2010, 55(4), 811–817.
  • Ho, C.; Ko, J.; Lue, H.; Lee, C.; Ferlan, I. Effects of Equinatoxin on the Guinea-pig Atrium. Toxicon. 1987, 25(6), 659–664. DOI: 10.1016/0041-0101(87)90112-7.
  • Sket, D.; Drašlar, K.; Ferlan, I.; Lebez, D. Equinatoxin, a Lethal Protein from Actinia equina—II. Pathophysiological Action. Toxicon. 1974, 12(1), 63–68. DOI: 10.1016/0041-0101(74)90100-7.
  • Alegre-Cebollada, J.; Oñaderra, M.; Gavilanes, J.; Del Pozo, A. M. Sea Anemone Actinoporins: The Transition from a Folded Soluble State to a Functionally Active Membrane-bound Oligomeric Pore. Curr. Protein Pept. Sci. 2007, 8(6), 558–572. DOI: 10.2174/138920307783018686.
  • Garnier, J.; Gibrat, J.-F.; Robson, B. [32] GOR Method for Predicting Protein Secondary Structure from Amino Acid Sequence. Methods Enzymol. 1996, Elsevier 266, 540–553.
  • Monastyrnaya, M. M.; Zykova, T. A.; Apalikova, O. V.; Shwets, T. V.; Kozlovskaya, E. P. Biologically Active Polypeptides from the Tropical Sea Anemone Radianthus Macrodactylus. Toxicon. 2002, 40(8), 1197–1217. DOI: 10.1016/S0041-0101(02)00139-3.
  • Turk, T.;. Cytolytic Toxins from Sea Anemones. J. Toxicol. 1991, 10(3), 223–262.
  • Avila, A.; Mateo Acosta, C. D.; Lage, A. A Carcinoembryonic Antigen‐directed Immunotoxin Built by Linking A Monoclonal Antibody to A Hemolytic Toxin. Int. J. Cancer. 1989, 43(5), 926–929. DOI: 10.1002/ijc.2910430533.
  • Pederzolli, C.; Belmonte, G.; Serra, M. D.; Macek, P.; Menestrina, G. Biochemical and Cytotoxic Properties of Conjugates of Transferrin with Equinatoxin II, a Cytolysin from a Sea Anemone. Bioconjugate Chem. 1995, 6(2), 166–173. DOI: 10.1021/bc00032a003.
  • Tejuca, M.; Anderluh, G.; Maček, P.; Marcet, R.; Torres, D.; Sarracent, J.; Alvarez, C.; Lanio, M. E.; Serra, M. D.; Menestrina, G.; et al. Antiparasite Activity of Sea-anemone Cytolysins onGiardia Duodenalis and Specific Targeting with anti-Giardia Antibodies. Int. J. Parasitol. 1999, 29(3), 489–498.
  • Amala, S.;. In Silico Analysis and 3D Modeling of ASAH1 Protein in Farber Lipogranulomatosis. Adv. Biotech. 2010, 10(6), 6–8.
  • Yeo, S. K.; Guan, J. L. Breast Cancer: Multiple Subtypes within a Tumor? Trends Cancer. 2017, 3(11), 753–760. DOI: 10.1016/j.trecan.2017.09.001.
  • Nagini, S.;. Breast Cancer: Current Molecular Therapeutic Targets and New Players. Anti-Cancer Agents Med. Chem. 2017, 17(2), 152–163. DOI: 10.2174/1871520616666160502122724.
  • Nielsen, D. L.; Kumler, I.; Palshof, J. A.; Andersson, M. Efficacy of HER2-targeted Therapy in Metastatic Breast Cancer. Monoclonal Antibodies and Tyrosine Kinase Inhibitors. Breast. 2013, 22(1), 1–12. DOI: 10.1016/j.breast.2012.09.008.
  • Cardoso, F.; Harbeck, N.; Fallowfield, L.; Kyriakides, S.; Senkus, E.; Group, E. G. W. Locally Recurrent or Metastatic Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2012, 23(suppl_7), vii11–vii9. DOI: 10.1093/annonc/mds232.
  • Alewine, C.; Hassan, R.; Pastan, I. Advances in Anticancer Immunotoxin Therapy. oncologist. 2015, 20(2), 176–185. DOI: 10.1634/theoncologist.2014-0358.
  • Keshtvarz, M.; Salimian, J.; Yaseri, M.; Bathaie, S. Z.; Rezaie, E.; Aliramezani, A.; Norouzbabaei, Z.; Amani, J.; Douraghi, M. Bioinformatic Prediction and Experimental Validation of a PE38-based Recombinant Immunotoxin Targeting the Fn14 Receptor in Cancer Cells. Immunotherapy. 2017, 9(5), 387–400.
  • Ahmad, Z. A.; Yeap, S. K.; Ali, A. M.; Ho, W. Y.; Alitheen, N. B.; Hamid, M. scFv Antibody: Principles and Clinical Application. Clinic. Develop. Immunol. 2012, 2012, 980250.
  • Saravanakumar, K.; Sahu, S. K.; Kathiresan, K. In-silico Studies on Fungal Metabolites against Breast Cancer Protein (BRCA1). Asian Pac. J. Trop. Biomed. 2012, 1, 3.
  • Niu LN, Fu TT, Chen ML, Dong YY, Tu JC, Wang ZH, Wang SQ, Zhao X, Hou NX, Chen Q, Wu Q. Prediction of T cell and B cell epitopes of the 22-, 47-, 56-, and 58-kDa proteins of Orientia tsutsugamushi. Asian Pacific Journal of Tropical Biomedicine. 2019 Oct 1;9(10):443.
  • Pucca, M. B.; Bertolini, T. B.; Barbosa, J. E.; Galina, S. V. R.; Porto, G. S. Therapeutic Monoclonal Antibodies: ScFv Patents as a Marker of a New Class of Potential Biopharmaceuticals. Braz. J. Pharm. Sci. 2011, 47(1), 31–38.
  • Mala J, Puthong S, Maekawa H, Kaneko Y, Palaga T, Komolpis K, Sooksai S. Construction and sequencing analysis of scFv antibody fragment derived from monoclonal antibody against norfloxacin (Nor155). Journal of Genetic Engineering and Biotechnology. 2017 Jun 1;15(1):69-76.
  • Chen, X.; Zaro, J. L.; Shen, W. C. Fusion Protein Linkers: Property, Design and Functionality. Adv. Drug Delivery Rev. 2013, 65(10), 1357–1369. DOI: 10.1016/j.addr.2012.09.039.
  • Reddy Chichili, V. P.; Kumar, V.; Sivaraman, J. Linkers in the Structural Biology of Protein-protein Interactions. Protein Sci. 2013, 22(2), 153–167. DOI: 10.1002/pro.2206.
  • Alvarado-Mesen, J.; Solano-Campos, F.; Canet, L.; Pedrera, L.; Hervis, Y. P.; Soto, C.; Borbón, H.; Lanio, M. E.; Lomonte, B.; Valle, A.; et al. Cloning, Purification and Characterization of Nigrelysin, a Novel Actinoporin from the Sea Anemone Anthopleura Nigrescens. Biochimie. 2019, 156, 206–223. DOI: 10.1016/j.biochi.2018.07.013.
  • Morante, K.; Caaveiro, J. M.; Tanaka, K.; Gonzalez-Manas, J. M.; Tsumoto, K. A Pore-forming Toxin Requires A Specific Residue for Its Activity in Membranes with Particular Physicochemical Properties. J. Biol. Chem. 2015, 290(17), 10850–10861. DOI: 10.1074/jbc.M114.615211.
  • Anderluh, G.; Macek, P. Cytolytic Peptide and Protein Toxins from Sea Anemones (Anthozoa: Actiniaria). Toxicon. 2002, 40(2), 111–124. DOI: 10.1016/S0041-0101(01)00191-X.
  • Sen, T. Z.; Jernigan, R. L.; Garnier, J.; Kloczkowski, A. GOR V Server for Protein Secondary Structure Prediction. Bioinformatics. 2005, 21(11), 2787–2788. DOI: 10.1093/bioinformatics/bti408.
  • Moghadam, Z. M.; Halabian, R.; Sedighian, H.; Behzadi, E.; Amani, J.; Fooladi, A. A. I. Designing and Analyzing the Structure of DT-STXB Fusion Protein as an Anti-tumor Agent: An in Silico Approach. Iran. J. Pathol. 2019, 14(4), 305. DOI: 10.30699/IJP.2019.101200.2004.
  • Eraghi, V.; Derakhshandeh, A.; Hosseini, A.; Motamedi-Boroojeni, A. In Silico Design and Expression of a Novel Fusion Protein of HBHA and High Antigenic Region of FAP-P of Mycobacterium Avium Subsp. Paratuberculosis in Pichia Pastoris. Mol. Biol. Res. Commun. 2017, 6(4), 161.
  • Yang, J.; Zhang, Y. Protein Structure and Function Prediction Using I-TASSER. Curr. Protoc. Bioinf. 2015, 52, 5.8.1–5.8.15. DOI: 10.1002/0471250953.bi0508s52.
  • Yang, J.; Zhang, Y. I-TASSER Server: New Development for Protein Structure and Function Predictions. Nucleic Acids Res. 2015, 43(W1), W174–81. DOI: 10.1093/nar/gkv342.
  • Hofacker, I. L.;. Vienna RNA Secondary Structure Server. Nucleic Acids Res. 2003, 31(13), 3429–3431. DOI: 10.1093/nar/gkg599.
  • Saha, S.; Raghava, G. P. AlgPred: Prediction of Allergenic Proteins and Mapping of IgE Epitopes. Nucleic Acids Res. 2006, 34(WebServer issue), W202–9. DOI: 10.1093/nar/gkl343.
  • Saadi, M.; Karkhah, A.; Nouri, H. R. Development of a Multi-epitope Peptide Vaccine Inducing Robust T Cell Responses against Brucellosis Using Immunoinformatics Based Approaches. Infect. Genet. Evol. 2017, 51, 227–234. DOI: 10.1016/j.meegid.2017.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.