62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Expression of scFv-anti-CHIKV-E2 in Escherichia coli with chaperones Co-expression, and its functional assay by electrochemical immunosensor

, , , , , , & show all

References

  • Goupil, B. A.; Mores, C. N. A Review of Chikungunya Virus-Induced Arthralgia: Clinical Manifestations, Therapeutics, and Pathogenesis. Torj 2016, 10(1), 129–140. DOI: 10.2174/1874312901610010129.
  • Pathak, H.; Mohan, M. C.; Ravindran, V. Chikungunya Arthritis. Clin. Med. (Lond) 2019, 19(5), 381–385. DOI: 10.7861/clinmed.2019-0035.
  • Deeba, F.; Haider, M. S. H.; Ahmed, A.; Tazeen, A.; Faizan, M. I.; Salam, N.; Hussain, T.; Alamery, S. F.; Parveen, S. Global Transmission and Evolutionary Dynamics of the Chikungunya Virus. Epidemiol. Infect. 2020, 148(e63), 1–11. DOI: 10.1017/S0950268820000497.
  • Kosasih, H.; de-Mast, Q.; Widjaja, S.; Sudjana, P.; Antonjaya, U.; Ma’roef, C.; Riswari, S. F.; Porter, K. R.; Burgess, T. H.; Alisjahbana, B. Evidence for Endemic Chikungunya Virus Infections in Bandung, Indonesia. PLOS Negl. Trop. Dis. 2013, 7(10), e2483. DOI: 10.1371/journal.pntd.0002483.
  • Natrajan, M. S.; Rojas, A.; Waggoner, J. J.; Kraft, C. S. Beyond Fever and Pain: Diagnostic Methods for Chikungunya Virus. J. Clin. Microbiol. 2019, 57(6), e00350–19. DOI: 10.1128/JCM.00350-19.
  • Andrew, A.; Navien, T. N.; Yeoh, T. S.; Citartan, M.; Mangantig, E.; Sum, M. S. H.; Ch’ng, E. S.; Tang, T. H. Diagnostic Accuracy of Serological Tests for the Diagnosis of Chikungunya Virus Infection: A Systematic Review and Meta-Analysis. PLOS Negl. Trop. Dis. 2022, 16(2), e0010152. DOI: 10.1371/journal.pntd.0010152.
  • Kashyap, R. S.; Morey, S. H.; Ramteke, S. S.; Chandak, N. H.; Parida, M.; Deshpande, P. S.; Purohit, H. J.; Taori, G. M.; Daginawala, H. F. Diagnosis of Chikungunya Fever in an Indian Population by an Indirect Enzyme-Linked Immunosorbent Assay Protocol Based on an Antigen Detection Assay: A Prospective Cohort Study. Clin. Vaccine Immunol 2010, 17(2), 291–297. DOI: 10.1128/CVI.00326-09.
  • Kim, Y. C.; López-Camacho, C.; Garcia-Larragoiti, N.; Cano-Mendez, A.; Hernandez-Flores, K. G.; Domínguez-Alemán, C. A.; Mar, M. A.; Vivanco-Cid, H.; Viveros-Sandoval, M. E.; Reyes-Sandoval, A. Development of an E2 ELISA Methodology to Assess Chikungunya Seroprevalence in Patients from an Endemic Region of Mexico. Viruses. 2019, 11(5), 407. DOI: 10.3390/v11050407.
  • Fumagalli, M. J.; de Souza, W. M.; Espósito, D. L. A.; Silva, A.; Romeiro, M. F.; Martinez, E. Z.; da Fonseca, B. A. L.; Figueiredo, L. T. M. Enzyme-Linked Immunosorbent Assay Using Recombinant Envelope Protein 2 Antigen for Diagnosis of Chikungunya Virus. Virol. J. 2018, 15(1), 112. DOI: 10.1186/s12985-018-1028-1.
  • Johnson, B. W.; Russell, B. J.; Goodman, C. H. Laboratory Diagnosis of Chikungunya Virus Infections and Commercial Sources for Diagnostic Assays. J. Infect. Dis. 2016, 214(suppl 5), S471–S474. DOI: 10.1093/infdis/jiw274.
  • Okabayashi, T.; Sasaki, T.; Masrinoul, P.; Chantawat, N.; Yoksan, S.; Nitatpattana, N.; Chusri, S.; Morales, R. E. V.; Grandadam, M.; Brey, P. T., et al. Detection of Chikungunya Virus Antigen by a Novel Rapid Immunochromatographic Test. J. Clin. Microbiol. 2015, 53(2), 382–388. DOI: 10.1128/JCM.02033-14.
  • Reddy, A.; Bosch, I.; Salcedo, N.; Herrera, B. B.; de Puig, H.; Narváez, C. F.; Caicedo-Borrero, D. M.; Lorenzana, I.; Parham, L.; García, K., et al. Development and Validation of a Rapid Lateral Flow E1/E2-Antigen Test and ELISA in Patients Infected with Emerging Asian Strain of Chikungunya Virus in the Americas. Viruses 2020, 12(9), 971. DOI: 10.3390/v12090971.
  • Suzuki, K.; Huits, R.; Phadungsombat, J.; Tuekprakhon, A.; Nakayama, E. E.; van den Berg, R.; Barbé, B.; Cnops, L.; Rahim, R.; Hasan, A., et al. Promising Application of Monoclonal Antibody Against Chikungunya Virus E1-Antigen Across Genotypes in Immunochromatographic Rapid Diagnostic Tests. Virol. J. 2020, 17(1), 90. DOI: 10.1186/s12985-020-01364-4.
  • George, A.; Amrutha, M. S.; Srivastava, P.; Sai, V. V. R.; Sunil, S.; Srinivasan, R. Label-Free Detection of Chikungunya Non-Structural Protein3 Using Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2019, 166(14), B1356–B1363. DOI: 10.1149/2.1081914jes.
  • Nasrin, F.; Tsuruga, K.; Utomo, D. I. S.; Chowdhury, A. D.; Park, E. Y. Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses. Biosensors. (Basel) 2021, 11(10), 376. DOI: 10.3390/bios11100376.
  • Kosasih, H.; Widjaja, S.; Surya, E.; Hadiwijaya, S. H.; Butarbutar, D. P.; Jaya, U. A.; Nurhayati, B.; Alisjahbana, M.; Williams, M. Evaluation of Two IgM Rapid Immunochromatographic Tests During Circulation of Asian Lineage Chikungunya Virus. Southeast Asian J. Trop. Med. Public Health 2012, 43(1), 55–61.
  • Peltomaa, R.; Barderas, R.; Benito-Peña, E.; Moreno-Bondi, M. C. Recombinant Antibodies and Their Use for Food Immunoanalysis. Anal. Bioanal. Chem 2021, 414(1), 193–217. DOI: 10.1007/s00216-021-03619-7.
  • Ahmad, Z. A.; Yeap, S. K.; Ali, A. M.; Ho, Y. W.; Banu, N.; Alitheen, M.; Hamid, M. scFv Antibody: Principles and Clinical Application. Clin. Develop. Immun. 2012, 2012, 1–15. DOI: 10.1155/2012/980250.
  • Novitriani, K.; Hardianto, A.; Lidya, B.; Firdaus, A. R. R. F.; Alisjahbana, B.; Yusuf, M.; Hidayati, N. A.; Subroto, T.; Gaffar, S. In Silicodesign and Expression of Anti-E1CHIKV E2 scFv in Biotinylated Form Using Escherichia coli Origami B (DE3) for Immunochromatographic Detection of the Indonesian Chikungunya Variant. J. Appl. Pharm. Sci. 2022, 12(12), 072–083. DOI: 10.7324/JAPS.2022.121208.
  • Nishihara, K.; Kanemori, M.; Yanagi, H.; Yura, T. Overexpression of Trigger Factor Prevents Aggregation of Recombinant Proteins in Escherichia coli. Appl. Environ. Microbiol. 2000, 66(3), 884–889. DOI: 10.1128/AEM.66.3.884-889.2000.
  • Bo, H. M.; Dong-Hyun, N.; Yong-Hwan, K. Coexpression of Molecular Chaperones to Enhance Functional Expression of Anti-BNP scFv in the Cytoplasm of E. Coli to Detect B-Type Natriuretic Peptide. World J. Microbiol. Biotechnol. 2011, 27(6), 1391–1398. DOI: 10.1007/s11274-010-0590-5.
  • Yousefi, M.; Farajnia, S.; Mokhtarzadeh, A.; Akbari, B.; Khosroshahi, S. A.; Mamipour, M.; Dariushnejad, H.; Ahmadzadeh, V. Soluble Expression of Humanized Anti-CD20 Single Chain Antibody in Escherichia coli by Cytoplasmic Chaperones Co-Expression. Avicenna. J. Med. Biotechnol. 2018, 10(3), 141–146.
  • Gaffar, S.; Hartati, Y. W.; Susanti, R.; Subroto, T. Recombinant Anti BNP-SCFV Production in Escherichia coli and Its Application for the Detection of Heart Failure by Electrochemical Immunosensor Using Screen-Printed Carbon Electrode-Gold Nanoparticles (SPCE-GNP). Res. J. Chem. Environ. 2018, 22(special issue II) , 1–13.
  • Hartati, Y. W.; Gaffar, S.; Alfiani, D.; Pratomo, U.; Sofiatin, Y.; Subroto, T. A Voltammetric Immunosensor Based on Gold Nanoparticle - Anti-EnaC Bioconjugate for the Detection of Epithelial Sodium Channel (EnaC) Protein As a Biomarker of Hypertension. Sensing. Bio-Sens. Res. 2020, 29, 100343. DOI: 10.1016/j.sbsr.2020.100343.
  • Sotnikov, D. V.; Berlina, A. N.; Ivanov, V. S.; Zherdev, A. V.; Dzantiev, B. B. Adsorption of Proteins on Gold Nanoparticles: One or More Layers? Colloids. Surfaces. B. Biointerfaces. 2018, 173, 557–563. DOI: 10.1016/j.colsurfb.2018.10.025.
  • Mamipour, M.; Yousefi, M.; Hasanzadeh, M. An Overview on Molecular Chaperones Enhancing Solubility of Expressed Recombinant Proteins with Correct Folding. Int. J. Biol. Macromol. 2017, 102, 367–375. DOI: 10.1016/j.ijbiomac.2017.04.025.
  • Estabragh, A. M.; Sadeghi, H. M. M.; Akbari, V. Co-Expression of Chaperones for Improvement of Soluble Expression and Purification of an antiHer2 scFv in Escherichia Coli. Adv. Biomed. Res. 2022, 11(1), 117. DOI: 10.4103/abr.abr_351_21.
  • Kudhair, B. K.; Green, J. Overproduction and Purification of Mycobacterium Tuberculosis WhiB3 in Escherichia coli Is Enhanced by Co-Expression with Trigger Factor Chaperone. Protein. Expression. Purif. 2023, 202, 106197. DOI: 10.1016/j.pep.2022.106197.
  • Martínez-Alonso, M., García-Fruitós, E., Ferrer-Miralles, N., Rinas, U., Villaverde, A. Side Effects of Chaperone Gene Co-Expression in Recombinant Protein Production. Microb. Cell Fact. 2010, 9(1), 64. DOI: 10.1186/1475-2859-9-64.
  • Carter, T. D.; Outten, F. W. Ni-NTA Affinity Chromatography to Characterize Protein-Protein Interactions During Fe-S Cluster Biogenesis. Methods Mol. Biol. 2021, 2353, 125–136. DOI: 10.1007/978-1-0716-1605-5_7.
  • Block, H.; Maertens, B.; Spriestersbach, A.; Brinker, N.; Kubicek, J.; Fabis, R.; Labahn, J.; Schäfer, F. Chapter 27 Immobilized-Metal Affinity Chromatography (IMAC). A Review. Methods Enzymol. 2009, 463(C), 439–473.
  • Bornhorst, B. J. A.; Falke, J. J. Purification of Proteins Using Polyhistidine Affinity Tags. Protein. Expression. Purif. 2010, 326, 245–254.
  • Chen, H.; Zhang, J.; Huang, R.; Wang, D.; Deng, D.; Zhang, Q.; Luo, L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules. 2023, 28(8), 3605. DOI: 10.3390/molecules28083605.
  • Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S. A. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors. (Basel) 2019, 9(3), 86. DOI: 10.3390/bios9030086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.