641
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Soil organic carbon fractions and humic substances are affected by land uses of Caatinga forest in Brazil

, , , , , , & show all
Pages 255-273 | Received 09 Jun 2018, Accepted 02 Dec 2018, Published online: 21 Jan 2019

References

  • Araújo Filho, R. N., M. B. G. S. Freire, B. P. Wilcox, J. B. West, F. J. Freire, and F. A. Marques. 2018. Recovery of carbon stocks in deforested caatinga dry forest soils requires atleast 60 years. Forest Ecology and Management 407:210–20. doi:10.1016/j.foreco.2017.10.002.
  • Ayala-Orozco, B., M. E. Gavito, F. Mora, I. Siddique, P. Balvanera, V. J. Jaramillo, H. Cotler, L. P. Romero-Duque, and E. Martínez-Meyer. 2018. Resilience of soil properties to land-use change in a tropical dry forest ecosystem. Land Degradation & Development 29 (2):315–25. doi:10.1002/ldr.2686.
  • Barreto, P. A. B., E. F. Gama-Rodrigues, A. C. Gama-Rodrigues, A. G. Fontes, J. C. Polidoro, M. K. S. Moço, R. C. R. Machado, and V. C. Baligar. 2011. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil. Agroforestry Systems 81 (3):213–20. doi:10.1007/s10457-010-9300-4.
  • Benbi, D. K., K. Brar, A. S. Toor, P. Singh, and H. Singh. 2012. Soil carbon pools under poplar-based agroforestry, rice-wheat, and maize-wheat cropping systems in semi-arid India. Nutrient Cycling in Agroecosystems 92(1):107–18. doi:10.1007/s10705-011-9475-8.
  • Benites, V. M., B. Madari, and P. L. O. A. Machado. 2003. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro: Embrapa Solos, 7 p. (Comunicado Técnico, 16).
  • Bharali, S., K. K. Baruah, P. Bhattacharyya, and D. Gorh. 2017. Integrated nutrient management in wheat grown in a northeast India soil: Impacts on soil organic carbon fractions in relation to grain yield. Soil & Tillage Research 168:81–91. doi:10.1016/j.still.2016.12.001.
  • Blanco-Moure, N., R. Gracia, A. C. Bielsa, and M. V. Lopez. 2016. Soil organic matterfractions as affected by tillage and soil texture under semiarid Mediterranean conditions. Soil and Tillage Research 155:381–9. doi:10.1016/j.still.2015.08.011.
  • Braga, J. M., and B. V. Defelipo. 1974. Spectrophotometric determination of phosphorus in soil and plant extracts. Revista Ceres 21:73–85.
  • Castelletti, C. H. M., A. M. M. Santos, M. Tabarelli, and J. M. C. Silva. 2003. Quanto ainda resta da Caatinga? Uma estimativa preliminar. In Ecologia e conservação da, Caatinga. Ed., ed. I. R. Leal, M. Tabarelli, and J. M. C. Silva. Recife: Universitária UFPE. p. 719–734.
  • Chan, K. Y., A. Bowman, and A. Oates. 2001. Oxidizible organic carbon fractions and soil quality changes in an paleustalf under different pasture leys. Soil Science 166 (1):61–7. doi:10.1097/00010694-200101000-00009.
  • Cheng, X., Y. Yang, M. Li, X. Dou, and Q. Zhang. 2013. The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou reservoir area of China. Plant and Soil 366 (1–2):415–24. doi:10.1007/s11104-012-1446-6.
  • Choudhury, B. U., A. R. Fiyaz, K. P. Mohapatra, and S. Ngachan. 2016. Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North-Eastern Himalayan region of India. Land Degradation & Development 27 (4):1163–74. doi:10.1002/ldr.2338.
  • Cotrofo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The microbial Efficiency-Matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19 (4):988–95. doi:10.1111/gcb.12113.
  • Deng, L., and Z. Shangguan. 2017. Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development 28 (1):151–65. doi:10.1002/ldr.2537.
  • Don, A., I. H. Böhme, A. B. Dohrmann, C. Poeplau, and C. C. Tebbe. 2017. Microbial community composition affects soil organic carbon turnover in mineral soils. Biology and Fertility of Soils 53 (4):445–56. doi:10.1007/s00374-017-1198-9.
  • Embrapa, Empresa Brasileira de Pesquisa Agropecuária. 1997. Manual de métodos de análise de solo. 2nd ed. Rio de Janeiro: CNPS.
  • Embrapa, Empresa Brasileira de Pesquisa Agropecuária. 2011. Centro nacional de pesquisa de solo. Manual de método e análise de solo. Rio de Janeiro, RJ, 230 p.
  • Fataei, E., S. Varamesh, and S. T. S. Safavian. 2018. Effects of afforestation on carbon stocks in Fandoghloo forest area. Pakistan Journal of Agricultural Sciences 55 (03):555–62. doi:10.21162/pakjas/18.4493.
  • Fattet, M., Y. Fu, M. Ghestem, W. Ma, M. Foulonneau, J. Nespoulous, Y. Le Bissonnais, and A. Stokes. 2011. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena 87 (1):60–9. doi:10.1016/j.catena.2011.05.006.
  • Ferez, A. P. C., O. C. Campoe, J. C. T. Mendes, and J. L. Stape. 2015. Silvicultural opportunities for carbon stock in restoration of forest in Brazil. Forest Ecology and Management 350:40–5. doi:10.1016/j.foreco.2015.04.015.
  • Ferreira, A. C. C., L. F. C. Leite, A. S. F. Araújo, and N. Eisenhauer. 2016. Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of northeast Brazil. Land Degradation & Development 27 (2):171–8. doi:10.1002/ldr.2282.
  • Food and Agriculture Organization 2014. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome: FAO.
  • Fultz, L. M., J. Moore-Kucera, T. M. Z. Zobeck, V. Acosta-Martínez, D. B. Wester, and V. G. Allen. 2013. Organic carbon dynamics and soil stability in five semiarid agroecosystems. Agriculture, Ecosystems and Environment 181:231–40. doi:10.1016/j.agee.2013.10.004.
  • Gelaw, A. M., B. R. Singh, and R. Lal. 2014. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agriculture, Ecosystems and Environment 188:256–63. doi:10.1016/j.agee.2014.02.035.
  • Guareschi, R. F., M. G. Pereira, and A. Perin. 2013. Oxidizable carbon fractions in red latosol under different management systems. Revista Ciência Agronômica 44 (2):242–50. doi:10.1590/S1806-66902013000200005.
  • Guidi, C., J. Magid, M. Rodeghiero, D. Gianelle, and L. Vesterdal. 2014. Effects of forest expansion on Mountain grassland, changes within soil organic carbon fractions. Plant and Soil 385 (1–2):373–87. doi:10.1007/s11104-014-2315-2.
  • Guimarães, D. V., M. I. S. Gonzaga, T. O. Silva, T. L. Silva, N. S. Dias, and M. I. S. Matias. 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research 126:177–82. doi:10.1016/j.still.2012.07.010.
  • Jaiarree, S., A. Chidthaisong, N. Tangtham, C. Polprasert, E. Sarobol, and S. C. Tyler. 2014. Carbon budget and sequestration potential in a sandy soil treated with compost. Land Degradation & Development 25 (2):120–9. doi:10.1002/ldr.1152.
  • Jia, X. H., Y. S. Li, B. Wu, Y. Y. Zhou, and X. R. Li. 2017. Effects of plant restoration on soil microbial biomass in an arid desert in Northern China. Journal of Arid Environments 144:192–200. doi:10.1016/j.jaridenv.2017.04.014.
  • Kotzé, E., P. F. Loke, M. C. Akhosi-Setaka, and C. C. D. Preez. 2016. Land use change affecting soil humic substances in three semi-arid agro-ecosystems in South Africa. Agriculture, Ecosystems and Environment 216:194–202. doi:10.1016/j.agee.2015.10.007.
  • Kunkel, M. L., A. N. Flores, T. J. Smith, J. P. McNamara, and S. G. Benner. 2011. A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma 165 (1):1–11. doi:10.1016/j.geoderma.2011.06.011.
  • Lal, R. 1994. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil & Tillage Research 27:1–8. doi:10.1016/0167-1987(93)90059-X.
  • Leite, L. F. C., E. S. Mendonca, P. L. O. A. Machado, and E. S. Matos. 2003. Total C and N storage and organic C pools of a Read-Yellow podzolic under conventional and no tillage at the Atlantic forest zone, southeastern Brazil. Soil Research 41 (4):717–30. doi:10.1071/SR02037.
  • Li, J., Y. Wen, X. Li, Y. Li, X. Yang, Z. Lin, Z. Song, J. M. Cooper, and B. Zhao. 2018. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China plain. Soil and Tillage Research 175:281–90. doi:10.1016/j.still.2017.08.008.
  • Liu, X., F. M. Li, D. Q. Liu, and G. J. Sun. 2010. Soil organic carbon, carbon fractions and nutrients as affected by land-use in semi-arid region of loess Plateau of China. Pedosphere 20(2):146–52. doi:10.1016/S1002-0160(10)60002-1.
  • Liu, M. Y., Q. R. Chang, Y. B. Qi, J. Liu, and T. Chen. 2014. Aggregation and soil organic carbon fractions under different land uses on the tableland of the loess Plateau of China. Catena 115:19–28. doi:10.1016/j.catena.2013.11.002.
  • Loveland, P. J., and R. W. Whaley. 1991. Particle size analysis (org.). In Soil analysis – Physical methods, ed. by K. A. Smith and C. E. Mullins. 271–328. New York: Marcel Dekker.
  • Maia, S. M. F., S. M. Ogle, C. C. Cerri, and C. E. P. Cerri. 2010. Changes in soil organic carbon storage under different agricultural management systems in the southwest amazon region of Brazil. Soil and Tillage Research 106 (2):177–84. doi:10.1016/j.still.2009.12.005.
  • Maia, S. M. F., F. A. S. Xavier, T. S. Oliveira, E. S. Mendonça, and J. A. Araújo Filho. 2007. Organic carbon pools in a luvisol under agroforestry and conventional farming systems in the semi-arid region of ceará Brazil. Agroforestry Systems 71 (2):127–38. doi:10.1007/s10457-007-9063-8.
  • Medeiros, E. V., G. P. Duda, L. A. R. Santos, J. R. S. Lima, J. S. Almeida-Cortêz, C. Hammecker, L. Lardy, and L. Cournac. 2017. Soil organic carbon, microbial biomass and enzyme activities responses to natural regeneration in a tropical dry region in northeast Brazil. Catena 151:137–46. doi:10.1016/j.catena.2016.12.012.
  • MMA (Ministério do Meio Ambiente) 2018. Subsídios Para a elaboração do plano de ação Para a prevenção e controle do desmatamento na caatinga. Ministério do meio ambiente, brasília. Acessed Maio 10, 2011. http://www.mma.gov.br/estruturas/203/_arquivos/diagnostico_do_desmatamento_na_caatinga_203_2_203_1.pdf.
  • Moura, P. M., T. D. Althoff, R. A. Oliveira, J. S. Souto, P. C. Souto, R. S. C. Menezes, and E. V. S. B. Sampaio. 2016. Carbon and nutrient fluxes through litterfall at four succession stages of caatinga dry forest in northeastern Brazil. Nutrient Cycling in Agroecosystems 105 (1):25–38. doi:10.1007/s10705-016-9771-4.
  • Mosquera, O., P. Buurman, B. L. Ramirez, and M. C. Amezquita. 2012. Carbon replacement and stability changes in short-term silvo-pastoral experiments in Colombian Amazonia. Geoderma 170:56–63. doi:10.1016/j.geoderma.2011.09.016.
  • Nie, X., Z. Li, J. Huang, B. Huang, H. Xiao, and G. Zen. 2017. Soil organic carbon fractions and stocks respond to restoration measures in degraded lands by water erosion. Environmental Management 59 (5):816–25. doi:10.1007/s00267-016-0817-9.
  • Oliveira, S. P., N. B. Lacerda, S. C. Blum, M. O. P. Escobar, and T. S. Oliveira. 2015. Organic carbon and nitrogen stocks in soils of northeastern Brazil converted to irrigated agriculture. Land Degradation & Development 26 (1):9–21. doi:10.1002/ldr.2264.
  • Redo, D., T. M. Aide, and M. L. Clark. 2013. Vegetation change in Brazil's dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. Journal of Land Use Science 8 (2):123–53. doi:10.1080/1747423X.2012.667448.
  • Ribeiro, K., E. R. D Sousa-Neto, J. A. D Carvalho, J. R. D Sousa Lima, R. S. C. Menezes, P. J. Duarte-Neto, G. da Silva Guerra, and J. P. H. B. Ometto. 2016. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian caatinga. Science of the Total Environment 571:1048–57. doi:10.1016/j.scitotenv.2016.07.095.
  • Rumpel, C., and I. Kögel-Knabner. 2011. Deep soil organic matter-A key but poorly understood component of terrestrial C cycle. Plant and Soil 338 (1–2):143–58. doi:10.1007/s11104-010-0391-5.
  • Sampaio, E. V. S. B. 2003. Caracterização da caatinga e fatores ambientais que afetam a ecologia das plantas lenhosas. In Ecossistemas brasileiros: manejo e conservação, ed. V. C. Sales, pp. 129–142. Fortaleza, Expressão Gráfica e Editora.
  • Santos, J. C., I. R. Leal, J. S. A. C. Cortez, G. W. Fernandes, and M. Tabarelli. 2011. Caatinga: The scientific negligence experienced by a dry tropical forest. Tropical Conservation Science 4 (3):276–86. doi:10.1177/194008291100400306.
  • Santos, U. J., E. V. Medeiros, G. P. Duda, M. C. Marques, E. S. Souza, M. Brossard, and C. Hammecker. 2018. Land use changes the soil carbon stocks, microbial biomass and fatty acid methyl ester (FAME) in Brazilian semiarid area. Archives of Agronomy and Soil Science 65: 1–15. doi:10.1080/03650340.2018.1523544.
  • Scolforo, H. F., J. R. S. Scolforo, J. M. Mello, C. R. Mello, and V. A. Morais. 2016. Spatial interpolators for improving the mapping of carbon stock of the arboreal vegetation in Brazilian biomes of Atlantic forest and savanna. Forest Ecology and Management 376:24–35. doi:10.1016/j.foreco.2016.05.047.
  • Sharma, V., S. Hussain, K. R. Sharma, and V. M. Arya. 2014. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems. Geoderma 232–234:81–7. doi:10.1016/j.geoderma.2014.04.039.
  • Silva, D. K. A., N. O. Freitas, R. G. Souza, F. S. B. Silva, A. S. F. Araujo, and L. C. Maia. 2012. Soil microbial biomass and activity under natural and regenerated forests and conventional sugarcane plantations in Brazil. Geoderma 189–190:257–61. doi:10.1016/j.geoderma.2012.06.014.
  • Sousa, F. P., T. O. Ferreira, E. S. Mendonca, R. E. Romero, and J. G. B. Oliveira. 2012. Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification. Agriculture, Ecosystems and Environment 148: 11–21. doi:10.1016/j.agee.2011.11.009.
  • Swift, R. S. 1996. Organic matter characterization. In Methods of soil analysis, ed. by Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Summer. Madison: Soil Science Society of America, American Society of Agronomy. p. 1011–1020.
  • Tripathi, R., A. K. Nayak, P. Bhattacharyya, A. K. Shukla, M. Shahid, R. Raja, B. B. Panda, S. Mohanty, A. Kumar, and V. K. Thilagam. 2014. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice-rice system. Geoderma 213:280–6. doi:10.1016/j.geoderma.2013.08.031.
  • Waldrop, M. P., and M. K. Firestone. 2004. Microbial community utilization of recalcitrant and simple carbono compounds: Impact of oak-woodland plant communities. Oecologia 138 (2):275–84. doi:10.1007/s00442-003-1419-9.
  • Wang, D., B. Wang, and X. Niu. 2014. Effects of natural forest types on soil carbon fractions in North-East China. Journal of Tropical Forest Science 26(3):362–70.
  • Wasige, J. E., T. A. Groen, B. M. Rwamukwaya, E. W. Tumwesigy, E. M. A. Smaling, and V. Jetten. 2014. Contemporary land use/land cover types determine soil organic carbon stocks in South-West Rwanda. Nutrient Cycling in Agroecosystems 100 (1):19–33. doi:10.1007/s10705-014-9623-z.
  • Wu, G., Z. Zhang, D. Wang, Z. Shi, and Y. Zhu. 2014. Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the loess Plateau of China. Journal of Hydrology 519:1362–7. doi:10.1016/j.jhydrol.2014.09.012.
  • Yeomans, J. C., and J. M. Bremner. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis 19 (13):1467–76. doi:10.1080/00103628809368027.
  • Yuan, Y., Z. Zhao, X. Li, Y. Wang, and Z. Bai. 2018. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Science of the Total Environment 613–614:1196–206. doi:10.1016/j.scitotenv.2017.09.170.
  • Zhao, H. L., Y. H. He, R. L. Zhou, Y. Z. Su, Y. Q. Li, and S. Drake. 2009. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena 77 (3):187–91. doi:10.1016/j.catena.2008.12.007.
  • Zhao, S. C., K. J. Li, W. Zhou, S. J. Qiu, S. W. Huang, and P. He. 2016. Changes in soil microbial community, enzyme activities and organic matter fractions under longterm straw return in North-Central China. Agriculture Ecosystems & Environment 216:82–8. doi:10.1016/j.agee.2015.09.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.