195
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Organic carbon fluxes using column leaching experiments in soil treated with pig slurry in SE Spain

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 136-151 | Received 30 Oct 2018, Accepted 17 Jun 2019, Published online: 04 Jul 2019

References

  • Anderson, J. P. E. 1982. Soil respiration. In Methods of soil analysis, part 2. Chemical and microbiological properties, ed. A. L. Page, 831–71. Madison, WI: American Society of Agronomy.
  • APHA. 1998. Standard methods for the examination water and wastewater, 20th ed. Washington, DC: American Public Health Association.
  • APWA. 2005. Standard methods for the examination of water and wastewater, 21st ed. Washington, DC: American Public Health Association.
  • Baggs, E. M., J. K. Chebii, and J. K. Ndufa. 2006. A short-term investigation of trace gas emissions following tillage and no tillage of agroforestry residues in western Kenya. Soil & Tillage Research 90 (1–2):69–76. doi:10.1016/j.still.2005.08.006.
  • Baldock, J. A., and J. O. Skjemstad. 1999. Soil organic carbon/soil organic matter. In Soil analysis: An interpretation manual, eds. K. I. Peverill, L. A. Sparrow, and D. J. Reuter, 159–70. Collingwood, Australia: CSIRO Publishing.
  • Bernal, M. P., M. A. Sanchez-Monedero, C. Paredes, and A. Roig. 1998. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agriculture, Ecosystems & Environment 69 (3):175–89. doi:10.1016/S0167-8809(98)00106-6.
  • Bigeriego, M. 1995. Depuracion, reciclado y reutilizacion de purines. 1er Congreso Nacional de Veterinaria y Media Ambiente, Imprenta Regional. Murcia 1:131–40.
  • Blodau, C., N. Basiliko, and T. R. Moore. 2004. Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67 (3):331–51. doi:10.1023/B:BIOG.0000015788.30164.e2.
  • Bower, C. A., and L. V. Wilcox. 1965. Soluble salts. In Methods of soils analysis part 2, 933–40. Madison, WI: American Society of Agronomy.
  • Carmona, D. M. 2012. Recuperacion de suelos acidificados y contaminados por mineria metalica: Ensayos en columnas. PhD. thesis, Technical University of Cartagena.
  • Carmona, D. M., and A. Faz. 2004. Potential use of anthropogenic wastes for remediation of contaminated lands by mining: Laboratory column tests. In Proceedings of Fourth international conference on land degradation, eds. A. Faz, R. Ortiz, and G. García, 436. Murcia, Spain: Quaderna.
  • Carmona, D. M., A. Faz, and J. M. Arocena. 2008. Dissolved organic carbon and metals release in amended mine soils. Macla 10:115–7.
  • Chapman, H. D. 1965. Cation exchange capacity. In Methods of soils analysis part 2, 891–900. Madison, WI: American Society of Agronomy.
  • Chikuvire, T. J., P. Muchaonyerwa, and R. Zengeni. 2018. Long-term effects of pig slurry application on selected soil quality parameters and tissue composition of maize in a subhumid subtropical environment. South African Journal of Plant and Soil 36 (2):143–8. doi:10.1080/02571862.2018.1512663.
  • Chodak, M., W. Borken, B. Ludwig, and F. Beese. 2001. Effect of temperature on the mineralization of C and N of fresh and mature compost in sandy material. Journal of Plant Nutrition and Soil Science 164 (3):289–94. doi:10.1002/1522-2624(200106)164:3<289::AID-JPLN289>3.0.CO;2-H.
  • Chow, A. T., K. K. Tanji, S. Gao, and R. A. Dahlgren. 2006. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biology and Biochemistry 38 (3):477–88. doi:10.1016/j.soilbio.2005.06.005.
  • Christ, M. J., and M. B. David. 1996. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biology & Biochemistry 28:1191–9. doi:10.1016/0038-0717(96)00120-4.
  • Council Directive 91/676/EEC. 1991. Protection of waters against pollution caused by nitrates from agricultural sources. Official Journal L 375, 1–8. http://www.boe.es/buscar/doc.php?id=BOE-A-1996-5618.
  • Culley, J. L. B. 1993. Density and compressibility in soil sampling and method of analysis, 529–630. New York, NY: Lewis Publisher.
  • da Costa, E. N. D., M. F. Landim de Souza, P. C. Lima Marrocos, D. Lobão, and D. M. Lopes da Silva. 2018. Soil organic matter and CO2 fluxes in small tropical watersheds under forest and cacao agroforestry. PLoS One 13 (7):e0200550. doi:10.1371/journal.pone.0200550.
  • dos Santos, U. J., G. P. Duda, M. C. Marques, EVd Medeiros, JRd Sousa Lima, ESd Souza, M. Brossard, and C. Hammecker. 2019. Soil organic carbon fractions and humic substances are affected by land uses of Caatinga forest in Brazil. Arid Land Research and Management 33 (3):255–73. doi:10.1080/15324982.2018.1555871.
  • FAO-ISRIC. 1990. Guidelines for soil description, 3rd edition. Rome, Italy: FAO.
  • Faz, A., J. L. Tortosa, M. Andujar, M. Llona, J. Lobera, A. Palop, and S. Amat. 2005. Application of pig slurries in the guadalentin valley for brócoli and watermelon production: Preliminary results. Advances in GeoEcology. 36:133–48.
  • Faz Cano, A., D. M. Carmona Garcés, and T. Pérez Revilla. 2011. Sistema de extracción, envasado, transporte, almacenamiento y preparación de ensayos en las muestras de suelo inalterado. España patent ES 2 340 834 B2. Filed march 3.
  • Fearnside, P. M. 2000. Greenhouse gas emissions from land-use change in Brazil’s Amazon Region. In Global climate change and tropical ecosystems, eds. R. Lal, J. M. Kimble, and B. A. Stewart, 438. Boca Raton, FL: CRC Press.
  • Fierer, N., and J. P. Schimel. 2002. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry 34 (6):777–87. doi:10.1016/S0038-0717(02)00007-X.
  • Gattinger, A., A. Muller, M. Haeni, C. Skinner, A. Fliessbach, N. Buchmann, P. Mader, M. Stolze, P. Smith, N. E.-H. Scialabba., et al. 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences 109 (44):18226–31. doi:10.1073/pnas.1209429109.
  • Gómez-Garrido, M., R. Zornoza, S. Martínez-Martínez, A. Büyükkılıç-Yanardag, and A. Faz. 2014. Nitrogen dynamic in soils amended with legislated and extremely high doses of pig slurry. Communications in Soil Science and Plant Analysis 45 (18):2429–46. doi:10.1080/00103624.2014.929701.
  • Hu, T., P. Sørensen, and J. E. Olesen. 2018. Soil carbon varies between different organic and conventional management schemes in arable agriculture. European Journal of Agronomy 94:79–88. doi:10.1016/j.eja.2018.01.010.
  • IPCC. 2000. Land use, land-use change and forestry, a special report of the IPCC, 377. New York, NY: Cambridge University Press.
  • Kim, Y. J., W. J. Choi, S. S. Lim, J. H. Kwak, S. X. Chang, H. Y. Kim, K. S. Yoon, and H. M. Ro. 2008. Changes in nitrogen isotopic composition during composting of cattle feedlot manure: Effects of bedding material type. Bioresource Technology 99 (13):5452–8. doi:10.1016/j.biortech.2007.11.012.
  • Lalrammawia, C., and K. Paliwal. 2010. Seasonal changes in net ecosystem change of CO2 and respiration of Cenchrus ciliaris L. grassland ecosystem in semiarid tropics: An eddy covariance measurement. Current Science 98 (9):1211–8.
  • Li, L. J., X. Zhu-Bark, R. Ye, T. A. Doane, and W. R. Horwath. 2018. Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability. Soil Biology and Biochemistry 119:41–9. doi:10.1016/j.soilbio.2018.01.003.
  • Li, Z., and L. M. Shuman. 1997. Mobility of Zn, Cd and Pb in soils as affected by poultry litter extract -I. leaching in soil columns. Environmental Pollution 95 (2):219–26.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Science Society of America Journal 42 (3):421–8. doi:10.2136/sssaj1978.03615995004200030009x.
  • Loro, P. J., D. W. Bergstrom, and E. G. Beauchamp. 1997. Intensity and duration of denitrification following application of manure and fertilizer to soil. Journal of Environment Quality 26 (3):706–13. doi:10.2134/jeq1997.00472425002600030016x.
  • Lou, Y., Z. Li, T. Zhang, and Y. Liang. 2004. CO2 emissions from subtropical arable soils of china. Soil Biology and Biochemistry 36 (11):1835–42. doi:10.1016/j.soilbio.2004.05.006.
  • MAPA. 1997. The Spanish agrofood sector facts and figures. Madrid, Spain: Ministerio de Agricultura, Pesca y Alimentacion.
  • Mermut, A. R., and H. Eswaran. 2001. Some major developments in soil science since the mid-1960s. Geoderma 100 (3–4):403–26. doi:10.1016/S0016-7061(01)00030-1.
  • Mondini, C., M. L. Cayuela, T. Sinocco, F. Cordaro, A. Toig, and M. A. Sánchez-Monedero. 2007. Greenhouse gas emissions and carbon sink capacity of amended soils evaluated under laboratory conditions. Soil Biology & Biochemistry 39:1366–74. doi:10.1016/j.soilbio.2006.12.013.
  • Olsen, S. R., and L. A. Dean. 1965. Hydrogen-ion activity. In Methods of soil analysis, ed. C. A. Black, 1044–5. Madison, WI: American Society of Agronomy.
  • Peech, M. 1965. Hydrogen-ion activity. In Methods of soils analysis part 2, 914–6. Madison, WI: American Society of Agronomy.
  • Porta, J., M. López-Acevedo, and R. Rodríguez. 1986. Técnicas y experimentos en edafología, 282. Barcelona, Spain: Col.legi Oficial d’Enginyers Agrònoms de Catalunya.
  • Provenzano, G., L. Rodriguez-Sinobas, and J. Roldan-Cañas. 2014. Irrigated agriculture: Water resources management for a sustainable environment. Biosystems Engineering 128:1–3. doi:10.1016/j.biosystemseng.2014.10.008.
  • Ribeiro, K., E. R. D. Sousa-Neto, J. A. D. Carvalho, J. R. D. Sousa Lima, R. S. C. Menezes, P. J. Duarte-Neto, G. da Silva Guerra, and J. P. H. B. Ometto. 2016. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian caatinga. Science of the Total Environment 571:1048–57. doi:10.1016/j.scitotenv.2016.07.095.
  • Rochette, P., D. A. Angers, and D. Côté. 2000. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: I. Carbon dioxide fluxes and microbial biomass carbon. Soil Science Society of America Journal 64 (4):1389–95. doi:10.2136/sssaj2000.6441389x.
  • Sainju, U. M., J. D. Jabro, and W. B. Stevens. 2008. Soil carbon dioxide emission and carbon sequestration as infl uenced by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environment Quality 37 (1):98–106. doi:10.2134/jeq2006.0392.
  • Sharma, K. L., S. C. Sharma, S. S. Bawa, S. Singh, D. S. Chandrika, V. Sharma, A. Khokhar, J. K. Grace, C. S. Rao, G. R. Maruthi, et al. 2014. Combined effect of tillage and organic fertilization on soil quality key indicators and indices in alluvial soils of Indo-Gangetic Plains under rainfed maize–wheat system. Archives of Agronomy and Soil Science 61 (3):313–27. doi:10.1080/03650340.2014.933319.
  • Silver, W., J. Neff, M. McGroddy, E. Veldkamp, M. Keller, and R. Coeme. 2000. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3 (2): 193–209. doi:10.1007/s100210000019.
  • Soil Survey of England and Wales. 1982. Soil survey laboratory methods. Technical Monograph 6. SSEW, Harpenden, UK.
  • United States Department of Agriculture. 2014. Keys to soil taxonomy., Washington, DC.
  • Yanardağ, I. H., A. Büyükkiliç Yanardag, A. Faz Cano, and A. R. Mermut. 2014. Effect of pig slurry application on soil organic carbon. In Soil remediation and plants, eds. K. Hakeem, M. Sabir, M. Ozturk, and A. Mermut. Waltham, MA: Academic Press.
  • Yanardağ, I. H., R. Zornoza, A. F. Cano, A. B. Yanardağ, and A. R. Mermut. 2015. Evaluation of carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure and its biochar by chemical and thermogravimetric analysis. Biology and Fertility of Soils 51 (2):183–96. doi:10.1007/s00374-014-0962-3.
  • Zhang, X., X. Han, W. Yu, P. Wang, and W. Cheng. 2017. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years. PLoS One 12 (9):e0184978. doi:10.1371/journal.pone.0184978.
  • Zhao, J., Y. Dong, Y. Qi, and M. Domroes. 2009. Precipitation pulses and soil CO2 emission in desert shrubland of Artemisia ordosica on the Ordos Plateau of inner Mongolia, China. Pedosphere 19:799–807. doi:10.1016/S1002-0160(09)60175-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.