188
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Community composition and catabolic functional diversity of soil microbes affected by Hedysarum scoparium in arid desert regions of northwest China

, &
Pages 152-170 | Received 12 May 2018, Accepted 26 Jun 2019, Published online: 10 Jul 2019

References

  • Aguilera, L. E., C. Armas, A. P. Cea, J. R. Gutiérrez, P. L. Meserve, and D. A. Kelt. 2016. Rainfall, microhabitat, and small mammals influence the abundance and distribution of soil microorganisms in a Chilean semi-arid shrubland. Journal of Arid Environment 126:37–46. doi:10.1016/j.jaridenv.2015.11.013.
  • Asghar, M. N., S. Khan, and S. Mushtaq. 2008. Management of treated pulp and paper mill effluent to achieve zero discharge. Journal of Environment Management 88 (4):1285–99. doi:10.1016/j.jenvman.2007.07.004.
  • Austin, A. T. 2011. Has water limited our imagination for arid land biogeochemistry? Trends in Ecology and Evolution 26 (5):229–35. doi:10.1016/j.tree.2011.02.003.
  • Bachar, A., M. I. Soares, and O. Gillor. 2012. The effect of resource islands on abundance and diversity of bacteria in arid soils. Microbial Ecology 63 (3):694–700. doi:10.1007/s00248-011-9957-x.
  • Bachelet, D., K. Ferschweiler, T. Sheehan, and J. Strittholt. 2016. Climate change effects on southern California deserts. Journal of Arid Environment 127:17–29. doi:10.1016/j.jaridenv.2015.10.003.
  • Bachelot, B., M. Uriarte, and K. Mcguire. 2015. Interactions among mutualism, competition, and predation foster species coexistence in diverse communities. Theoretical Ecology 8 (3):297–312. doi:10.1007/s12080-015-0251-2.
  • Bai, C. M., X. L. He, H. L. Tang, B. Q. Shan, and L. L. Zhao. 2009. Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us Sandland, China. Soil Biology and Biochemistry 41 (5):941–7. doi:10.1016/j.soilbio.2009.02.010.
  • Bell, C. W., V. Acosta-Martinez, N. E. Mcintyre, S. Cox, D. T. Tissue, and J. C. Zak. 2009. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microbial Ecology 58 (4):827–42. doi:10.1007/s00248-009-9529-5.
  • Bendavid, E. A., E. Zaady, Y. Sher, and A. Nejidat. 2011. Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev desert using combined PLFA and DGGE analyses. Fems Microbiology Ecology 76:492–503. doi:10.1111/j.1574-6941.2011.01075.x.
  • Bossio, D. A., and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology 35 (3):265–78. doi:10.1007/s002489900082.
  • Broeckling, C. D., A. K. Broz, J. Bergelson, D. K. Manter, and J. M. Vivanco. 2008. Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology 74 (3):738–44. doi:10.1128/AEM.02188-07.
  • Chen, D., J. Mi, P. Chu, J. Cheng, L. Zhang, Q. Pan, Y. C. Xie, and Y. F. Bai. 2015. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian plateau. Landscape Ecology 30 (9):1669–82. doi:10.1007/s10980-014-9996-z.
  • Chen, G., H. Zhu, and Y. Zhang. 2003. Soil microbial activities and carbon and nitrogen fixation. Research in Microbiology 154 (6):393. doi:10.1016/S0923-2508(03)00082-2.
  • Chowdhury, T. R., and R. P. Dick. 2012. Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities. Journal of Microbiological Methods 88 (2):285–91. doi:10.1016/j.mimet.2011.12.008.
  • Chung, Y. A., L. S. Robert, R. K. Chery, C. R. Sasha, and A. R. Jennifer. 2017. Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass. Journal of Arid Environments 142:59–65. doi:10.1016/j.jaridenv.2017.03.005.
  • Eswaran, H., R. Ahrens, T. J. Rice, and B. A. Stewart. 2002. Soil classification: A global desk reference, 1–263. Boca Raton: CRC Press.
  • Fernandes, M. F., J. Saxena, and R. P. Dick. 2013. Comparison of whole-cell fatty acid (MIDI) or phospholipid fatty acid (PLFA) extractants as biomarkers to profile soil microbial communities. Microbial Ecology 66 (1):145–57. doi:10.1007/s00248-013-0195-2.
  • Frossard, A., L. Gerull, M. Mutz, and M. O. Gessner. 2013. Litter supply as driver of microbial activity and community structure on decomposing leaves: A test in experimental streams. Applied and Environmental Microbiology 79 (16):4965–73. doi:10.1128/AEM.00747-13.
  • Garland, J. L., and A. L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology 5:2351–9.
  • He, X. L., Y. P. Li, and L. L. Zhao. 2010. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us Sandland, China. Soil Biology and Biochemistry 42 (8):1313–9. doi:10.1016/j.soilbio.2010.03.022..
  • He, X. L., H. L. Tang, and Y. X. Zhang. 2006. Floristic ecogeographical distribution of Hedysarum L. in China. Journal of Hebei University (Natural Science Edition) 26:625–648 (in Chinese with English abstract).
  • Heijden, M. G. A. V. D., R. D. Bardgett, and N. M. V. Straalen. 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x.
  • Hinsinger, P., A. G. Bengough, D. Vetterlein, and I. M. Young. 2009. Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant and Soil 321 (1–2):117–52. doi:10.1007/s11104-008-9885-9.
  • Hu, Y., D. Xiang, S. D. Veresoglou, F. Chen, Y. Chen, Z. Hao, X. Zhang, and B. Chen. 2014. Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biology and Biochemistry 77:51–7. doi:10.1016/j.soilbio.2014.06.014.
  • Jones, D. L., and K. Kiell. 2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biology and Biochemistry 34 (2):209–19. doi:10.1016/S0038-0717(01)00175-4.
  • Kaplan, D., M. Maymon, C. M. Agapakis, A. Lee, A. Wang, B. A. Prigge, M. Volkogon, and A. M. Hirsch. 2013. A survey of the microbial community in the rhizosphere of two dominant shrubs of the negev desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. American Journal of Botany 100 (9):1713–25. doi:10.3732/ajb.1200615.
  • Kuske, C. R., L. O. Ticknor, M. E. Miller, J. M. Dunbar, J. A. Davis, S. M. Barns, and J. Belnap. 2002. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Applied and Environmental Microbiology 68 (4):1854–63. doi:10.1128/AEM.68.4.1854-1863.2002.
  • Lange, M., M. Habekost, N. Eisenhauer, C. Roscher, H. Bessler, C. Engels, Y. Oelmann, S. Scheu, W. Wilcke, E. D. Schulze, and G. Gleixner. 2014. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One 9(5):e96182. doi:10.1371/journal.pone.0096182.
  • Liu, Z., B. Fu, X. Zheng, and G. Liu. 2010. Plant biomass, soil water content and soil N: P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biology and Biochemistry 42 (3):445–50. doi:10.1016/j.soilbio.2009.11.027.
  • Louche, J., M. A. Ali, B. Cloutier-Hurteau, F. X. Sauvage, H. Quiquampoix, and C. Plassard. 2010. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiology Ecology 73:323–35. doi:10.1111/j.1574-6941.2010.00899.x.
  • Lozano, Y. M., S. Hortal, C. Armas, and F. I. Pugnaire. 2014. Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment. Soil Biology and Biochemistry 78 :298–306. doi:10.1016/j.soilbio.2014.08.007.
  • Lucero, M. E., J. R. Barrow, P. Osuna, and I. Reyes. 2006. Plant–fungal interactions in arid and semi-arid ecosystems: Large-scale impacts from microscale processes. Journal of Arid Environment 65 (2):276–84. doi:10.1016/j.jaridenv.2005.08.014.
  • Massimo, N. C., M. M. Nandi Devan, K. R. Arendt, M. H. Wilch, J. M. Riddle, S. H. Furr, C. Steen, J. M. U’Ren, D. C. Sandberg, and A. E. Arnold. 2015. Fungal endophytes in above-ground tissues of desert plants: Infrequent in culture, but highly diverse and distinctive symbionts. Microbial Ecology 70 (1):61–76. doi:10.1007/s00248-014-0563-6.
  • Miura, T., K. Makoto, S. Niwa, N. Kaneko, and K. Sakamoto. 2017. Comparison of fatty acid methyl ester methods for characterization of microbial communities in forest and arable soil: Phospholipid fraction (PLFA) versus total ester linked fatty acids (EL-FAME). Pedobiologia 63:14–8. doi:10.1016/j.pedobi.2017.04.002.
  • Molina-Montenegro, M. A., R. Oses, C. Atala, C. Torres-Díaz, G. Bolados, and P. Leon-Lobos. 2016. Nurse effect and soil microorganisms are key to improve the establishment of native plants in a semiarid community. Journal of Arid Environments 126:54–61. doi:10.1016/j.jaridenv.2015.10.016.
  • Nielsen, U. N., G. H. R. Osler, C. D. Campbell, D. F. R. P. Burslem, and R. V. D. Wal. 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography 37 (7):1317–28. doi:10.1111/j.1365-2699.2010.02281.x.
  • Olsen, S. R., C. V. Cole, and F. S. Watanabe. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular/United States Department of Agriculture: Washington.
  • Pasternak, Z., A. Al-Ashhab, J. Gatica, R. Gafny, S. Avraham, D. Minz, O. Gillor, and E. Jurkevitch. 2013. Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions. PLoS One 8 (7):e69705. doi:10.1371/journal.pone.0069705.
  • Pugnaire, F. I., C. Armas, and F. T. Maestre. 2011. Positive plant interactions in the Iberian Southeast: Mechanisms, environmental gradients, and ecosystem function. Journal of Arid Environments 75 (12):1310–20. doi:10.1016/j.jaridenv.2011.01.016.
  • Qiang, W., X. L. He, J. J. Wang, and L. L. Zhao. 2019. Temporal and spatial variation of arbuscular mycorrhizal fungi under the canopy of Hedysarum scoparium in the northern desert, China. Applied Soil Ecology 136:139–47. doi:10.1016/j.apsoil.2019.01.003.
  • Rango, A., S. L. Tartowski, A. Laliberte, J. Wainwright, and A. Parsons. 2006. Islands of hydrologically enhanced biotic productivity in natural and managed arid ecosystems. Journal of Arid Environments 65 (2):235–52. doi:10.1016/jjaridenv.2011.01.016.
  • Riley, D., and S. A. Barber. 1969. Bocarbonate accumulation and pH changes at the soybean root-soil interface. Soil Science Society of America Journal 33 (6):905–8. doi:10.2136/sssaj1969.03615995003300060031x.
  • Rinnan, R., S. Stark, and A. Tolvanen. 2009. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. Journal of Ecology 97 (4):788–800. doi:10.1111/j.1365-2745.2009.01506.x.
  • Rodríguez-Caballero, G., F. Caravaca, A. J. Fernandez González, M. M. Alguacil, M. Fernández-López, and A. Roldán. 2017. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environments 584–585:838–48. doi:10.1016/j.scitotenv.2017.01.128.
  • Rutgers, M., M. Wouterse, S. M. Drost, A. M. Breure, C. Mulder, D. Stone, R. E. Creamer, A. Winding, and J. Bloem. 2016. Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe. Applied Soil Ecology 97:23–35. doi:10.1016/j.apsoil.2015.06.007.
  • Santoyo, G., G. Moreno-Hagelsieb, M. del Carmen Orozco-Mosqueda, and B. R. Glick. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research 183:92–9. doi:10.1016/j.micres.2015.11.008.
  • Sarwar, M., M. Arshad, D. A. Martens, and W. T. Frankenberger. 1992. Tryptophan-dependent synthesis of auxins in soil. Plant and Soil 147 (2):207–15. doi:10.1007/BF00029072.
  • Schlatter, D. C., M. G. Bakker, J. M. Bradeen, and L. L. Kinkel. 2015. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96 (1):134–42. doi:10.1890/13-1648.1.
  • Searle, P. L., and T. W. Speir. 1976. An automated colorimetric method for the determination of urease activity in soil and plant material. Communications in Soil Science and Plant Analysis 7 (4):365–74. doi:10.1080/00103627609366648.
  • Singh, B. K., R. D. Bardgett, P. Smith, and D. S. Reay. 2010. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8 (11):779–90. doi:10.1038/nrmicro2439.
  • Steinauer, K., A. Chatzinotas, and N. Eisenhauer. 2016. Root exudate cocktails: The link between plant diversity and soil microorganisms? Ecology and Evolution 6 (20):7387–96. doi:10.1002/ece3.2454.
  • Stephan, A., A. H. Meyer, and B. Schmid. 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology 88 (6):988–98. doi:10.1046/j.1365-2745.2000.00510.x.
  • Tarafdar, J. C., and H. Marschner. 1994. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biology and Biochemistry 26 (3):387–95. doi:10.1016/0038-0717(94)90288-7.
  • Tische, A., E. Blagodatskaya, and U. Hamer. 2015. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions. Soil Biology and Biochemistry 89:226–37. doi:10.1016/j.soilbio.2015.07.011.
  • Torres, I. F., F. Bastida, T. Hernández, J. Albaladejo, and C. García. 2015. Enzyme activity, microbial biomass and community structure in a long-term restored soil under semi-arid conditions. Soil Research 53 (5):553. doi:10.1071/SR14297.
  • Vries, F. T., P. Manning, J. R. B. Tallowin, S. R. Mortimer, E. S. Pilgrim, K. A. Harrison, P. J. Hobbs, H. Quirk, B. Shipley, J. H. C. Cornelissen, et al. 2012. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters 15:1230–9. doi:10.1111/j.1461-0248.2012.01844.x.
  • Willers, C., P. J. Jansen van Rensburg, and S. Claassens. 2015. Microbial signature lipid biomarker analysis–an approach that is still preferred, even amid various method modifications. Journal of Applied Microbiology 118 (6):1251–63. doi:10.1111/jam12798.
  • Wu, J., S. T. Chen, Z. H. Hu, and X. Zhang. 2015. Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase. Environmental Science 36:1497–506. (in Chinese, with English abstract). doi:10.13227/j.hjkx.2015.04.050.
  • Xie, L. L., X. L. He, K. Wang, L. F. Hou, and Q. Sun. 2017. Spatial dynamics of dark septate endophytes in the roots and rhizospheres of Hedysarum scoparium in northwest China and the influence of edaphic variables. Fungal Ecology 26:135–43. doi:10.1016/j.funeco.2017.01.007.
  • Xue, Z. J., S. S. An, M. Cheng, and W. Z. Wang. 2014. Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau. Journal of Plant Interactions 9 (1):889–900. doi:10.1080/17429145.2014.990063.
  • Yang, Q., X. Wang, and Y. Shen. 2013. Comparison of soil microbial community catabolic diversity between rhizosphere and bulk soil induced by tillage or residue retention. Journal of Soil Science and Plant Nutrition 13:187–99. doi:10.4067/S0718-95162013005000017.
  • Yu, J., Z. K. Xue, X. L. He, C. M. Liu, and Y. Steinberger. 2017. Shifts in composition and diversity of arbuscular mycorrhizal fungi and glomalin contents during revegetation of desertified semiarid grassland. Applied Soil Ecology 115:60–7. doi:10.1016/j.apsoil.2017.03.015.
  • Zelles, L., Q. Y. Bai, T. Beck, and F. Beese. 1992. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biology and Biochemistry 24 (4):317–23. doi:10.1016/0038-0717(92)90191-Y.
  • Zhang, N., S. Wan, J. Guo, G. Han, J. Gutknecht, B. Schmid, L. Yu, W. X. Liu, J. Bi, Z. Wang, and K. P. Ma. 2015. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology and Biochemistry 89:12–23. doi:10.1016/j.soilbio.2015.06.022.
  • Zhang, Y. J., X. L. He, L. L. Zhao, J. Zhang, and W. Xu. 2017. Dynamics of arbuscular mycorrhizal fungi and glomalin under Psammochloa villosa, along a typical dune in desert, north China. Symbiosis 73 (3):145–53. doi:10.1007/s13199-017-0488-1.
  • Zuo, Y. L., X. L. He, S. J. Wang, and L. L. Zhao. 2016. Characteristics of soil microbial community structure in the rhizospheric soil of Ammopiptanthus mongolicus by phospholipid fatty acid (PLFA). Environment Sciences 37:2705–13. (in Chinese, with English abstract). doi:10.13227/j.hjkx.2016.07.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.