175
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Responses of soil organic carbon and nitrogen to land-use changes in a semiarid region of northwest China

, , , , , , & show all
Pages 188-206 | Received 19 Jul 2018, Accepted 20 Aug 2019, Published online: 10 Sep 2019

References

  • Ahlström, A., M. R. Raupach, G. Schurgers, B. Smith, and A. Arneth. 2015. Carbon cycle: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348 (6237):895–9.
  • Amundson, R. 2001. The carbon budget in soils. Annual Review of Earth and Planetary Sciences 29 (1):535–62. doi:10.1146/annurev.earth.29.1.535.
  • An, H., Q. L. Li, X. Yan, X. Z. Wu, R. T. Liu, and Y. Fang. 2019. Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia, northwest China. Ecological Engineering 127:348–55. doi:10.1016/j.ecoleng.2018.12.014.
  • Arneth, A., S. P. Harrison, S. Zaehle, K. Tsigaridis, S. Menon, P. J. Bartlein, J. Feichter, A. Korhola, M. Kulmala, and D. O'Donnell. 2010. Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience 3 (8):525–32. doi:10.1038/ngeo905.
  • Arora, V. K., and G. J. Boer. 2010. Uncertainties in the 20th century carbon budget associated with land use change. Global Change Biology 16 (12):3327–48. doi:10.1111/j.1365-2486.2010.02202.x.
  • Baddeley, J. A., A. C. Edwards, and C. A. Watson. 2017. Changes in soil C and N stocks and C:N stoichiometry 21 years after land use change on an arable mineral topsoil. Geoderma 303:19–26. doi:10.1016/j.geoderma.2017.05.002.
  • Brodowski, S., A. Wulf, L. Ingo, and C. C. Du Preez. 2004. Losses and biogeochemical cycling of soil organic nitrogen with prolonged arable cropping in the South African Highveld evidence from D- and L-amino acids. Biogeochemistry 71 (1):17–42. doi:10.1007/s10533-005-5733-7.
  • Chen, T., A. Bao, J. Guli, H. Guo, G. X. Zheng, L. L. Jiang, C. Chang, and L. Tuerhanjiang. 2019. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Science of the Total Environment 653:1311–25. doi:10.1016/j.scitotenv.2018.11.058.
  • De Deyn, G. B., J. H. C. Cornelissen, and R. D. Bardgett. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11 (5):516–31. doi:10.1111/j.1461-0248.2008.01164.x.
  • Del Grosso, S., W. Parton, T. Stohlgren, D. L. Zheng, D. Bachelet, S. Prince, K. Hibbard, and R. Olson. 2008. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89 (8):2117–26. doi:10.1890/07-0850.1.
  • Deng, L., G. Liu, and Z. P. Shangguan. 2014. Land use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: A synthesis. Global Change Biology 20 (11):3544–56. doi:10.1111/gcb.12508.
  • Ding, F., Y. L. Hu, L. J. Li, A. Li, S. W. Shi, P. Y. Lian, and D. H. Zeng. 2013. Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant and Soil 373 (1–2):659–72. doi:10.1007/s11104-013-1827-5.
  • Dirmeyer, P. A., D. Niyogi, N. de Noblet-Ducoudré, R. E. Dickinson, and P. K. Snyder. 2010. Impacts of land use change on climate. International Journal of Climatology 30 (13):1905–7. doi:10.1002/joc.2157.
  • Fissore, C., C. P. Giardina, R. K. Kolka, C. C. Trettin, G. M. King, M. F. Jurgensen, C. D. Barton, and S. D. McDowell. 2008. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America. Global Change Biology 14:193–205. doi:10.1111/j.1365-2486.2007.01478.x.
  • Ge, N. N., X. R. Wei, X. Wang, X. T. Liu, M. A. Shao, X. X. Jia, X. Z. Li, and Q. Q. Zhang. 2019. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena 172:148–57. doi:10.1016/j.catena.2018.08.021.
  • Hagerty, S.B., K. J. van Groenigen, S.D. Allison, B. A. Hungate, E. Schwartz, G. W. Koch, R. K. Kolka, and P. Dijkstra. 2014. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Climate Change 4 (10):903–6. doi:10.1038/nclimate2361.
  • Jackson, R. B., J. L. Banner, E. G. Jobbágy, W. T. Pockman, and D. H. Wall. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418 (6898):623–6. doi:10.1038/nature00910.
  • Jia, X. X., X. Wang, L. C. Hou, X. R. Wei, Y. Zhang, M. A. Shao, and X. N. Zhao. 2019. Variable response of inorganic carbon and consistent increase of organic carbon as a consequence of afforestation in areas with semiarid soils. Land Degradation and Development 30:1345–56. doi:10.1002/ldr.3320.
  • Johannes, L., and K. Markus. 2015. The contentious nature of soil organic matter. Nature 528:60–8. doi:10.1038/nature16069.
  • John, R., J. Q. Chen, N. Lu, and B. Wilske. 2009. Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environmental Research Letters 4 (4):045010–9. doi:10.1088/1748-9326/4/4/045010.
  • Kirk, G., and P. Bellamy. 2010. Analysis of change in organic carbon in mineral soils across England and Wales using a simple single-pool model. European Journal of Soil Science 61 (3):406–11. doi:10.1111/j.1365-2389.2010.01242.x.
  • Knapp, A. K., and M. D. Smith. 2001. Interannual variability in net primary production and precipitation-Response. Science 293:5536.
  • Laganière, J., D. A. Angers, and D. Paré. 2010. Carbon accumulation in agriculture soils after afforestation: A meta-analysis. Global Change Biology 16:439–53. doi:10.1111/j.1365-2486.2009.01930.x.
  • Lal, R. 2013. Carbon sequestration, Terrestrial. In Encyclopedia of energy, ed. CJ Cleveland, 289–298. Amsterdam and Boston, MA: Elsevier Academic Press.
  • Lal, R., D. Pimentel, K. Van Oost, J. Six, G. Govers, T. Quine, and S. D. Gryze. 2008. Soil erosion: A carbon sink or source? Science 319 (5866):1040–2. doi:10.1126/science.319.5866.1040.
  • Lehnert, L. W., K. Wesche, K. Trachte, C. Reudenbach, and J. Bendix. 2016. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Science Reports 6:24367. doi:10.1038/srep24367.
  • Li, G., S. B. Sun, J. C. Han, J. W. Yan, W. B. Liu, Y. Wei, N. Lu, and Y. Y. Sun. 2019. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Science of the Total Environment 660:177–87. doi:10.1016/j.scitotenv.2019.01.028.
  • Liu, J., S. X. Li, Z. Y. Ouyang, C. Tam, and X. D. Chen. 2008. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proceedings of the National Academy of Sciences of Sciences 105 (28):9477–82. doi:10.1073/pnas.0706436105.
  • Malhi, S. S., S. Brandt, and K. S. Gill. 2003. Cultivation and grassland type effects on light fraction and total organic C and N in a Dark Brown Chernozemic soil. Canadian Journal of Soil Science 83 (2):145–53. doi:10.4141/S02-028.
  • Meier, I. C., and C. Leuschner. 2010. Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology 16 (3):1035–45. doi:10.1111/j.1365-2486.2009.02074.x.
  • MEA (Millennium Ecosystem Assessment). 2005. Ecosystems and human well-being: desertification synthesis. Washington, DC: World Resources Institute.
  • Michael, W. I. S., S. T. Margaret, A. Samuel, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kogel-Knabner, J. Lehmann, and D. A. C. Manning. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478 (7367):49–56. doi:10.1038/nature10386.
  • Nadal-Romero, R. E., I. Otal-Laín, T. Lasanta, P. Sánchez-Navarrete, P. Errea, and E. Cammeraat. 2018. Woody encroachment and soil carbon stocks in subalpine areas in the Central Spanish Pyrenees. Science of the Total Environment 636:727–36. doi:10.1016/j.scitotenv.2018.04.324.
  • Nan, L., M. Y. Wang, B. L. Ning, D. D. Yu, and B. J. Fu. 2018. Research advances in ecosystem services in drylands under global environmental changes. Current Opinion in Environmental Sustainability 33:92–8. doi:10.1016/j.cosust.2018.05.004.
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300 (5625):1560–3. doi:10.1126/science.1082750.
  • Pan, X. Z., and K. Pan. 2000. Soil Data Center, National Earth System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China. http://soil.geodata.cn. doi:10.11666/00057.ver1.db.
  • Poeplau, C., A. Don, L. Vesterdal, J. Leifeld, B. V. Wesemael, J. Schumacher, and A. Gensior. 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone carbon response functions as a model approach. Global Change Biology 17 (7):2415–27. doi:10.1111/j.1365-2486.2011.02408.x.
  • Post, W. M., and K. C. Kwon. 2000. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology 6 (3):317–27. doi:10.1046/j.1365-2486.2000.00308.x.
  • Quinton, J. N., G. Govers, K. Van Oost, and R. D. Bardgett. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience 3 (5):311–4. doi:10.1038/ngeo838.
  • Reich, P. B., S. E. Hobbie, and T. D. Lee. 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geoscience 7 (12):920–4. doi:10.1038/ngeo2284.
  • Reynolds, J. F., D. M. S. Smith, E. F. Lambin, B. L. Turner, M. Mortimore, S. P. J. Batterbury, T. E. Downing, H. Dowlatabadi, R. J. Fernandez, J. E. Herrick., et al. 2007. Global desertification: Building a science for dryland development. Science 316 (5826):847–51. doi:10.1126/science.1131634.
  • Sala, O. E., W. K. Lauenroth, and R. A. Golluscio. 1997. Plant functional types in temperate semi-arid regions. In Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change, ed. TM Smith, HH Shugart and FI Woodward, 217–33. New York: Cambridge University Press.
  • Tang, S., J. X. Guo, S. C. Li, J. H. Li, S. Xie, X. J. Zhai, C. J. Wang, Y. J. Zhang, and K. Wang. 2019. Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil and Tillage Research 185:29–35. doi:10.1016/j.still.2018.08.011.
  • Torbern, T.,. F. Rasmus, C. Bernard, E. Mougin, S. Horion, L. Kergoat, H. Nieto, C. Mbow, A. Ehammer, and J. Demarty. 2016. Spatiotemporal variability in carbon exchange fluxes across the Sahel. Agricultural and Forest Meteorology 226–227:108–18. doi:10.1016/j.agrformet.2016.05.013.
  • Van Oost, K., T. A. Quine, G. Govers, S. De Gryze, J. Six, J. W. Harden, J. C. Ritchie, G. W. McCarty, G. Heckrath, C. Kosmas., et al. 2007. The impact of agricultural soil erosion on the global carbon cycle. Science 318 (5850):626–9. doi:10.1126/science.1145724.
  • Wang, B., P. Gao, X. Niu, and J. N. Sun. 2017. Policy-driven China’s Grain to Green Program: Implications for ecosystem services. Ecosystem Services 27:38–47. doi:10.1016/j.ecoser.2017.07.014.
  • Wang, F., R. Li, and Y. S. Xie. 2001. Analysis on eco-environment construction in human period on Loess Plateau. Soil and Water Conservation 8:138–42.
  • Wang, F. T., P. L. An, C. Huang, Z. Zhang, and J. M. Hao. 2018. Is afforestation-induced land use change the main contributor to vegetation dynamics in the semiarid region of North China? Ecological Indicators 88:282–91. doi:10.1016/j.ecolind.2017.12.061.
  • Wang, Q., L. Zhang, L. Li, Y. Bai, J. Cao, and X. Han. 2009. Changes in carbon and nitrogen of Chernozem soil along a cultivation chronosequence in a semi-arid grassland. European Journal of Soil Science 60 (6):916–23. doi:10.1111/j.1365-2389.2009.01174.x.
  • Wang, S., A. Wilkes, Z. C. Zhang, X. F. Chang, R. Lang, Y. F. Wang, and H. S. Niu. 2011. Management and land use change effect on soil carbon in northern China’s grassland: A synthesis. Agriculture Ecosystem Environment 142 (3–4):329–40. doi:10.1016/j.agee.2011.06.002.
  • Wang, Y., L. Liu, and Z. P. Shangguan. 2017. Carbon storage and carbon sequestration potential under the Grain for Green Program in Henan Province, China. Ecological Engineering 100:147–56. doi:10.1016/j.ecoleng.2016.12.010.
  • Wei, X. R., X. Z. Li, X. X. Jia, and M. A. Shao. 2013. Accumulation of soil organic carbon in aggregates after afforestation on abandoned farmland. Biology and Fertility of Soils 49 (6):637–46. doi:10.1007/s00374-012-0754-6.
  • Wei, X. R., M. A. Shao, X. L. Fu, R. Horton, Y. Li, and X. C. Zhang. 2009. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China. Biogeochemistry 96 (1–3):149–62. doi:10.1007/s10533-009-9350-8.
  • Yacine, K., M. Gartzia, A. El Aich, and C. L. Alados. 2018. Deserts do not advance, they are created: Land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. Journal of Arid Environments 158:1–8. doi:10.1016/j.jaridenv.2018.07.002.
  • Yan, Y. C., X. Wang, Z. J. Guo, J. Q. Chen, X. P. Xin, D. W. Xu, R. R. Yan, B. R. Chen, and L. J. Xu. 2018. Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China. Catena 170:159–68. doi:10.1016/j.catena.2018.06.013.
  • Yang, Y. H., P. Li, J. Z. Ding, X. Zhao, W. H. Ma, C. J. Ji, and J. G. Fang. 2014. Increased topsoil carbon stock across China's forests. Global Change Biology 20 (8):2687–96. doi:10.1111/gcb.12536.
  • Zhang, K., H. Dang, S. Tan, X. Cheng, and Q. Zhang. 2010. Change in soil organic carbon following the ‘grain-for-green’ programme in China. Land Degradation and Development 21 (1):13–23. doi:10.1002/ldr.954.
  • Zhang, Y., M. Tigabu, Z. G. Yi, H. T. Li, Z. Zhuang, Z. Yang, and X. Q. Ma. 2019. Soil parent material and stand development stage effects on labile soil C and N pools in Chinese fir plantations. Geoderma 338:247–58. doi:10.1016/j.geoderma.2018.11.050.
  • Zhao, Y. F., X. Q. Zou, J. X. Zhang, L. G. Cao, X. W. H. Xu, K. X. Zhang, and Y. Y. Chen. 2014. Spatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961–2012. Quaternary International 349:196–206. doi:10.1016/j.quaint.2014.06.050.
  • Zhao, Z. N., X. R. Wei, X. Wang, T. E. Ma, L. Q. Huang, H. L. Gao, J. Fan, X. Z. Li, and X. X. Jia. 2019. Concentration and mineralization of organic carbon in forest soils along a climatic gradient. Forest Ecology and Management 432:246–55. doi:10.1016/j.foreco.2018.09.026.
  • Zhou, M. J. 2005. The GIS Based Temporal and Spatial Variations of Land Use in the Loess Plateau. Dissertation. Northwest A&F University, Yangling, China.
  • Zhu, T.X. 2012. Gully and tunnel erosion in the hilly Loess Plateau region, China. Geomorphology 153:144–55. doi:10.1016/j.geomorph.2012.02.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.