262
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Different types of biocrusts affect plant communities by changing the microenvironment and surface soil nutrients in the Qinghai-Tibetan Plateau

, , , , , & show all
Pages 306-318 | Received 04 Apr 2019, Accepted 20 Oct 2019, Published online: 06 Nov 2019

References

  • Anderson, David C., Kimball T. Harper, and Ralph C. Holmgren. 1982. Factors influencing development of cryptogamic soil crusts in Utah deserts. Journal of Range Management 35 (2):180. doi:10.2307/3898386.
  • Belnap, J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils 35 (2):128–35. doi:10.1007/s00374-002-0452-x.
  • Belnap, J., B. Weber, and B. Büdel. 2016. Biological soil crusts as an organizing principle in drylands. Cham: Springer International Publishing.
  • Belnap, J., R. Prasse, and K. T. Harper. 2001. Influence of biological soil crusts on soil environments and vascular plants. Berlin, Heidelberg: Springer.
  • Belnap, J., and O. L. Lange. 2003. Biological soil crusts: structure, function, and management. Berlin; Heidelberg: Springer.
  • Berdugo, M., S. Soliveres, and F. T. Maestre. 2014. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17 (7):1242–56. doi:10.1007/s10021-014-9790-4.
  • Bliss LCGold, W. G. 1999. Vascular plant reproduction, establishment, and growth and the effects of cryptogamic crusts within a polar desert ecosystem, Devon Island, N.W.T., Canada. Canadian Journal of Botany 77 (5):623–36. doi:10.1139/b99-031.
  • Bowker, M. A., R. L. Mau, F. T. Maestre, C. Escolar, and A. P. Castillo Monroy. 2011. Functional profiles reveal unique ecological roles of various biological soil crust organisms. Functional Ecology 25 (4):787–95. doi:10.1111/j.1365-2435.2011.01835.x.
  • Brotherson, J. D., and S. R. Rushforth. 1983. Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Naturalist 43 (1):73–8. doi:10.2307/2408854.
  • Bu, C., C. Wang, Y. Yang, L. Zhang, and M. A. Bowker. 2017. Physiological responses of artificial moss biocrusts to dehydration-rehydration process and heat stress on the Loess Plateau, China. Journal of Arid LAND 9 (3):419–31. doi:10.1007/s40333-017-0057-8.
  • Chen, Huai, Qiuan Zhu, Changhui Peng, Ning Wu, Yanfen Wang, Xiuqing Fang, Yongheng Gao, Dan Zhu, Gang Yang, Jianqing Tian., et al. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology 19 (10):2940–55. doi:10.1111/gcb.12277.
  • Dastjerdipour, A. E., M. H. Farpoor, and M. Sarcheshmehpour. 2015. Effect of biological soil crusts and anionic polyelectrolyte polymer on some physical and chemical properties of a sandy soil. Journal of Science and Technology of Agriculture and Natural Resources 18 (69):1–11.
  • Deines, L., R. Rosentreter, D. J. Eldridge, and M. D. Serpe. 2007. Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts. Plant and Soil 295 (1–2):23–35. doi:10.1007/s11104-007-9256-y.
  • Elbert, W., B. Weber, S. Burrows, J. Steinkamp, B. Büdel, M. O. Andreae, and U. Pöschl. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5 (7):459–62. doi:10.1038/ngeo1486.
  • Feng, Y., B. Wu, Q. Lu, X. Wang, H. Yang, and D. Sun. 2008. Dynamics analysis on landscape pattern of Alpine-cold desertified area in the Qinhai-Tibetan Plateau: A case study in Guinan County, Qinghai Province. Forest Research 21 (2):182–7. doi:10.1016/S1872-2040(08)60061-4.
  • Hu, C., F. Li, Y. Xie, Z. Deng, and X. Chen. 2018. Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake. Physics and Chemistry of the Earth 103 (SI):28–34. doi:10.1016/j.pce.2017.04.001.
  • Lan, S., H. Ouyang, L. Wu, D. Zhang, and C. Hu. 2016. Biological soil crust community types differ in photosynthetic pigment composition, fluorescence and carbon fixation in Shapotou region of China. Applied Soil Ecology 111:9–16. doi:10.1016/j.apsoil.2016.11.009.
  • Maestre, F.T., M.A. Bowker, Y. Cantón, A.P. Castillo-Monroy, J. Cortina, C. Escolar, A. Escudero, R. Lázaro, and I. Martínez. 2011. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. Journal of Arid Environments 75 (12):1282–91. doi:10.1016/j.jaridenv.2010.12.008.
  • Miller, Jesse E. D., and Ellen I. Damschen. 2017. Biological soil crust cover is negatively related to vascular plant richness in Ozark sandstone glades. The Journal of the Torrey Botanical Society 144 (2):170–8. doi:10.3159/TORREY-D-15-00076.
  • Miller, M. E., R. T. Belote, M. A. Bowker, and S. L. Garman. 2011. Alternative states of a semiarid grassland ecosystem: Implications for ecosystem services. Ecosphere 2 (5):art55. doi:10.1890/ES11-00027.1.
  • Oliver, M. J., J. Velten, and B. D. Mishler. 2005. Desiccation tolerance in bryophytes: A reflection of the primitive strategy for plant survival in dehydrating habitats? Integrative and Comparative Biology 45 (5):788. doi:10.1093/icb/45.5.788.
  • Ponzetti, Jeanne M., and Bruce P. McCune. 2001. Biotic soil crusts of Oregon's shrub steppe: Community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104 (2):212–25. doi:10.1639/0007-2745(2001)104.
  • Porada, P., B. Weber, W. Elbert, U. Pöschl, and A. Kleidon. 2014. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochemical Cycles 28 (2):71–85. doi:10.1002/2013GB004705.
  • Ren, G., Z. Shang, R. Long, Y. Hou, and B. Deng. 2013. The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau, China. Environmental Earth Sciences 69 (1):235–45. doi:10.1007/s12665-012-1951-1.
  • Root, H.T., and B. McCune. 2012. Regional patterns of biological soil crust lichen species composition related to vegetation, soils, and climate in Oregon, USA. Journal of Arid Environments 79:93–100. doi:10.1016/j.jaridenv.2011.11.017.
  • Rutherford, W. A., T. H. Painter, S. Ferrenberg, J. Belnap, G. S. Okin, C. Flagg, and S. C. Reed. 2017. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Scientific Reports 7 (1):44188. doi:10.1038/srep44188.
  • Sedia, Ekaterina G., and Joan G. Ehrenfeld. 2003. Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100 (3):447–58. doi:10.1034/j.1600-0706.2003.12058.x.
  • Soudzilovskaia, N. A., B. J. Graae, J. C. Douma, O. Grau, A. Milbau, A. Shevtsova, L. Wolters, and J. H. Cornelissen. 2011. How do bryophytes govern generative recruitment of vascular plants? New Phytologist 190 (4):1019. doi:10.1111/j.1469-8137.2011.03644.x.
  • Suab, Y. G., A. X. Li, X. R. Li, and G. Huang. 2011. Nitrogen fixation in biological soil crusts from the Tengger desert, northern China. European Journal of Soil Biology 47 (3):182–7. doi:10.1016/j.ejsobi.2011.04.001.
  • Thiet, R. K., A. Doshas, and S. M. Smith. 2014. Effects of biocrusts and lichen-moss mats on plant productivity in a US sand dune ecosystem. Plant and Soil 377 (1–2):235–44. doi:10.1007/s11104-013-2002-8.
  • Wang, Chang Ting, Rui Jun Long, Qi Ji Wang, Lu Ming Ding, and Mei Ping Wang. 2007. Effects of altitude on plant-species diversity and productivity in an alpine meadow, Qinghai-Tibetan plateau. Australian Journal of Botany 55 (2):110–7. doi:10.1002/gcc.10223.
  • Wang, L., G. Zhang, L. Zhu, and H. Wang. 2017. Biocrust wetting induced change in soil surface roughness as influenced by biocrust type, coverage and wetting patterns. Geoderma 306:1–9. doi:10.1016/j.geoderma.2017.06.032.
  • Wang, S., A. Wilkes, Z. Zhang, X. Chang, R. Lang, Y. Wang, and H. Niu. 2011. Management and land use change effects on soil carbon in northern China's grasslands: A synthesis. Agriculture Ecosystems & Environment 142 (3–4):329–40. doi:10.1016/j.agee.2011.06.002.
  • Zhang, B. C., X. B. Zhou, and Y. M. Zhang. 2015. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang. Journal of Arid Land 7 (1):101–9. doi:10.1007/s40333-014-0035-3.
  • Zhang, B., Y. Zhang, X. Li, and Y. Zhang. 2018. Successional changes of fungal communities along the biocrust development stages. Biology and Fertility of Soils 54 (2):285–94. doi:10.1007/s00374-017-1259-0.
  • Zhang, Q., and J. C. Zak. 1998. Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in West Texas. Soil Biology & Biochemistry 30 (1):39–45. doi:10.1016/S0038-0717(97)00089-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.