436
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Bioremediation of cadmium in a sandy and a clay soil by microbially induced calcium carbonate precipitation after one week incubation

, , &
Pages 319-335 | Received 24 Sep 2019, Accepted 21 Jan 2020, Published online: 06 Feb 2020

References

  • Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology 36 (7):981–8. doi:10.1007/s10295-009-0578-z.
  • Achal, V., X. Pan, Q. Fu, and D. Zhang. 2012. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials 201–202:178–84. doi:10.1016/j.jhazmat.2011.11.067.
  • Achal, V., X. Pan, and D. Zhang. 2011. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering 37 (10):1601–5. doi:10.1016/j.ecoleng.2011.06.008.
  • Achal, V., X. Pan, and D. Zhang. 2012. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89 (6):764–8. doi:10.1016/j.chemosphere.2012.06.064.
  • Achal, V., X. Pan, D. Zhang, and Q. Fu. 2012. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. Journal of Microbiology and Biotechnology 22 (2):244–7. doi:10.4014/jmb.1108.08033.
  • Anbu, P., C. H. Kang, Y. J. Shin, and J. S. So. 2016. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5:250. doi:10.1186/s40064-016-1869-2.
  • APHA. 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: American Public Health Association.
  • ASTM. 2007. Standard test method for particle-size analysis of soil. Annual Book of ASTM Standards. West Conshohocken, PA: American Society for Testing and Materials.
  • Bao, S. D. 2005. Soil agricultural chemistry analysis. Beijing, China: China Agriculture Press.
  • Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246 (5434):527–9. doi:10.1038/246527a0.
  • Brookes, P. C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils 19 (4):269–75. doi:10.1007/BF00336094.
  • Casida, L. E. J., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Science 98:371–6. doi:10.1097/00010694-196412000-00004.
  • Chen, F., C. Deng, W. Song, D. Zhang, F. A. Al-Misned, M. G. Mortuza, G. M. Gadd, and X. Pan. 2016. Biostabilization of desert sands using bacterially induced calcite precipitation. Geomicrobiology Journal 33 (3–4):243–9. doi:10.1080/01490451.2015.1053584.
  • Cho, D. H., M. H. Yoo, and E. Y. Kim. 2004. Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. Journal of Microbiology and Biotechnology 14:250–5.
  • Dejong, J. T., M. B. Fritzges, and K. Nusslein. 2006. Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering 132 (11):1381–92. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381).
  • EPA-ROC. 1994. The standard methods for determination of heavy metals in soils and plants. Taipei, Taiwan: National Institute of Environmental Analysis of EPA-ROC.
  • Gat, D., M. Tsesarsky, D. Shamir, and Z. Ronen. 2014. Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria. Biogeosciences 11 (10):2561–9. doi:10.5194/bg-11-2561-2014.
  • Guo, H., S. Luo, L. Chen, X. Xiao, Q. Xi, W. Wei, G. Zeng, C. Liu, Y. Wan, J. Chen, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresource Technology 101 (22):8599–605. doi:10.1016/j.biortech.2010.06.085.
  • Hammes, F., and W. Verstraete. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Bio/Technology 1 (1):3–7. doi:10.1023/A:1015135629155.
  • Horváth, B., O. Opara-Nadi, and F. Beese. 2005. A simple method for measuring the carbonate content of soils. Soil Science Society of America Journal 69 (4):1066–8. doi:10.2136/sssaj2004.0010.
  • Huang, R., S. Gao, W. Wang, S. Staunton, and G. Wang. 2006. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, Southeast China. Science of the Total Environment 368 (2–3):531–41. doi:10.1016/j.scitotenv.2006.03.013.
  • Jiang, W., J. Lv, L. Luo, K. Yang, Y. Lin, F. Hu, J. Zhang, and S. Zhang. 2013. Arsenate and cadmium co-adsorption and co-precipitation on goethite. Journal of Hazardous Materials 262:55–63. doi:10.1016/j.jhazmat.2013.08.030.
  • Kang, C. H., S. H. Han, Y. Shin, S. J. Oh, and J. S. So. 2014. Bioremediation of Cd by microbially induced calcite precipitation. Applied Biochemistry and Biotechnology 172 (6):2907–15. doi:10.1007/s12010-014-0737-1.
  • Kang, C. H., S. J. Oh, Y. J. Shin, S. H. Han, I. H. Nam, and J. S. So. 2015. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering 24:402–7. doi:10.1016/j.ecoleng.2014.10.009.
  • Kang, C. H., Y. Shin, P. Anbu, I. H. Nam, and J. S. So. 2016. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation. The Journal of General and Applied Microbiology 62 (4):206–12. doi:10.2323/jgam.2016.03.001.
  • Krajewska, B. 2018. Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research 13:59–67. doi:10.1016/j.jare.2017.10.009.
  • Kumari, D., X. Pan, D. J. Lee, and V. Achal. 2014. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. International Biodeterioration & Biodegradation 94:98–102. doi:10.1016/j.ibiod.2014.07.007.
  • Li, M., X. Cheng, and H. Guo. 2013. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation 76:81–5. doi:10.1016/j.ibiod.2012.06.016.
  • Mahanty, B., S. Kim, and C. G. Kim. 2013. Assesment of biostimulated or bioaugmented calcification system with bacillus pasteurii in a simulated soil environment. Microbial Ecology 65 (3):679–88. doi:10.1007/s00248-012-0137-4.
  • Mitchell, A. C., and F. G. Ferris. 2005. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence. Geochimica et Cosmochimica Acta 69 (17):4199–210. doi:10.1016/j.gca.2005.03.014.
  • Pan, X. L. 2009. Microbiologically induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment. Research Journal of Chemistry and Environment 13:3–4.
  • Peleg, M., and M. G. Corradini. 2011. Microbial growth curves: What the models tell us and what they cannot. Critical Reviews in Food Science and Nutrition 51 (10):917–45. doi:10.1080/10408398.2011.570463.
  • Rivadeneyra, M. A., R. Delgado, A. D. Moral, M. R. Ferrer, and A. R. Cormenzana. 1994. Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiology Ecology 13 (3):197–204. doi:10.1111/j.1574-6941.1994.tb00066.x.
  • Rodriguez-Navarro, C., M. Rodriguez-Gallego, K. B. Chekroun, and M. T. González-Muñoz. 2003. Conservation of ornamental stone by Myxococcus xanthus induced carbonate biomineralization. Applied and Environmental Microbiology 69 (4):2182–93. doi:10.1128/AEM.69.4.2182-2193.2003.
  • Rouff, A. A., R. J. Reeder, and N. S. Fisher. 2002. Pb(II) sorption with calcite: A radiotracer study. Aquatic Geochemistry 8 (4):203–28. doi:10.1023/B:AQUA.0000003729.05602.de.
  • Sarmast, M., M. H. Farpoor, M. Sarcheshmehpoor, and M. K. Eghbal. 2014. Micromorphological and biocalcification effects of Sporosarcina pasteurii and Sporosarcina ureae in sandy soil columns. Journal of Agricultural Science and Technology 16:681–93.
  • SAS Institute. 2009. SAS/STAT user’s guide. Version 9.2. Cary, NC: SAS institute.
  • Senthil, B. S., F. Fazila, and S. Jayalakshmi. 2012. Characterization of urease enzyme from marine bacterium Klebsiella species. African Journal of Microbiology Research 6:5914–23.
  • Sparks, D. L. 1996. Methods of soil analysis. Part 3. Chemical Methods (Soil Science Society of America Book Series, No. 5). Madison, WI: American Society of Agronomy.
  • Tabatabai, M. A. 1982. Soil enzymes methods of soil analysis, 539–79. Part 2. Madison, WI: American Society of Agronomy.
  • Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedures for the speciation of particulate trace metals. Analytical Chemistry 51 (7):844–51. doi:10.1021/ac50043a017.
  • Urunmatsoma, S. O. P., E. U. Ikhuoria, and F. E. Okieimen. 2010. Chemical fractionation and heavy metal accumulation in maize (Zea mays) grown on chromated copper arsenate (CCA) contaminated soil amended with cow dung manure. International Journal of Biotechnology and Molecular Biology Research 1:65–73.
  • Walkley, A., and A. I. Black. 1934. Examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic and titration method. Soil Science 34:29–38. doi:10.1097/00010694-193401000-00003.
  • Wong, L. S. 2015. Microbial cementation of ureolytic bacteria from the genus Bacillus: A review of the bacterial application on cement-based materials for cleaner production. Journal of Cleaner Production 93:5–17. doi:10.1016/j.jclepro.2015.01.019.
  • Xu, M., P. Hadi, G. Chen, and G. McKay. 2014. Removal of cadmium ions from wastewater using innovative electronic waste-derived material. Journal of Hazardous Materials 273:118–23. doi:10.1016/j.jhazmat.2014.03.037.
  • Yang, J., X. Pan, C. Zhao, S. Mou, V. Achal, F. A. Al-Misned, M. G. Mortuza, and G. M. Gadd. 2016. Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiology Journal 33 (3–4):261–6. doi:10.1080/01490451.2015.1068889.
  • Zhao, Y., J. Yao, Z. Yuan, T. Wang, Y. Zhang, and F. Wang. 2017. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research International 24 (1):372–80. doi:10.1007/s11356-016-7810-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.