407
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation

ORCID Icon, , , , &
Pages 361-391 | Received 29 Apr 2019, Accepted 20 Mar 2020, Published online: 08 Apr 2020

References

  • Abbaslou, H., F. Martin, A. Abtahi, and F. Moore. 2014. Trace element concentrations and background values in the arid soils of Hormozgan Province of southern Iran. Archives of Agronomy and Soil Science 60 (8):1125–43. doi:10.1080/03650340.2013.864387.
  • Adriano, D. C. 2001. Trace elements in the terrestrial environment. New York, NY: Springer.
  • Ahmad, J., and A. M. Goni. 2010. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environmental Monitoring and Assessment 166:347–57. doi:10.1007/s10661-009-1006-6.
  • Akhtar, M. J., S. Ullah, I. Ahmad, A. Rauf, S. M. Nadeem, M. Y. Khan, S. Hussain, and L. Bulgariu. 2018. Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere 190:234–42. doi:10.1016/j.chemosphere.2017.09.136.
  • Alfaro, M. R., A. Montero, O. M. Ugarte, C. W. A. do Nascimento, A. M. de Aguiar Accioly, C. M. Biondi, and Y. J. A. B. da Silva. 2015. Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment 187 (1):4198. doi:10.1007/s10661-014-4198-3.
  • Almeida, C. M., A. P. Mucha, and M. T. Vasconcelos. 2004. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environmental Science & Technology l38:3112–8. doi:10.1021/es049932j.
  • Almeida, C. M., A. P. Mucha, and M. T. Vasconcelos. 2005. The role of a salt marsh plant on trace metal bioavailability in sediments. Estimation by different chemical approaches. Environmental Science and Pollution Research 12 (5):271–7. doi:10.1065/espr2005.05.258.
  • Anyakora, C., T. Ehianeta, and O. Umukoro. 2013. Heavy metal levels in soil samples from highly industrialized Lagos environment. African Journal of Environmental Science and Technology 7 (9):917–24.
  • Asad, S. A., M. Farooq, A. Afzal, and H. West. 2019. Integrated phytobial heavy metals remediation strategies for sustainable clean environment-A review. Chemosphere 217:925–41. doi:10.1016/j.chemosphere.2018.11.021.
  • Ashraf, M. A., I. Hussain, R. Rasheed, M. Iqbal, M. Riaz, and M. S. Arif. 2017. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management 198:132–43. doi:10.1016/j.jenvman.2017.04.060.
  • Ashraf, S., Q. Ali, Z. A. Zahir, S. Ashraf, and H. N. Asghar. 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety 174:714–27. doi:10.1016/j.ecoenv.2019.02.068.
  • Atafar, Z., A. Mesdaghinia, J. Nouri, M. Homaee, M. Yunesian, M. Ahmadimoghaddam, and A. H. Mahvi. 2010. Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment 160:83–9. doi:10.1007/s10661-008-0659-x.
  • Avnimelech, Y. 1993. Irrigation with sewage effluents: The Israeli experience. Environmental Science & Technology 27 (7):1278–81. doi:10.1021/es00044a001.
  • Bandara, T., I. Herath, P. Kumarathilaka, M. Seneviratne, G. Seneviratne, N. Rajakaruna, M. Vithanage, and Y. S. Ok. 2017. Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. Journal of Soils and Sediments 17 (3):665–73. doi:10.1007/s11368-015-1243-y.
  • Basu, S., R. C. Rabara, and S. Negi. 2018. AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology 102:36–45. doi:10.1016/j.pmpp.2017.11.007.
  • Baudouin, C., M. Charveron, R. Tarrouse, and Y. Gall. 2002. Environmental pollutants and skin cancer. Cell Biology and Toxicology 18:341–8. doi:10.1023/a:1019540316060.
  • Beesley, L., M. Marmiroli, L. Pagano, V. Pigoni, G. Fellet, T. Fresno, T. Vamerali, M. Bandiera, and N. Marmiroli. 2013. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment 454–455:598–603. doi:10.1016/j.scitotenv.2013.02.047.
  • Beygi, M., and M. Jalali. 2018. Background levels of some trace elements in calcareous soils of the Hamedan Province, Iran. Catena 162:303–16. doi:10.1016/j.catena.2017.11.001.
  • Bolan, N. S., M. A. Khan, J. Donaldson, D. C. Adriano, and C. Matthew. 2003. Distribution and bioavailability of copper in farm effluent. Science of the Total Environment 309:225–36. doi:10.1016/S0048-9697(03)00052-4.
  • Carlon, C. 2007. Derivation methods of soil screening values in Europe. EC-JRC, Ispra EUR 22805-EN. Joint Research Centre, Bussels, Belgium.
  • Chaney, R. L., S. L. Brown, Y. M. Li, J. S. Angle, T. I. Stuczynski, W. L. Daniels, C. L. Henry, G. Siebielec, M. Malik, J. A. Ryan, et al. 2000. Progress in risk assessment for soil metals, and in-situ remediation and phytoextraction of metals from hazardous contaminated soils. Paper presented at the Phytoremediation: State of the Science Conference, Boston, MA, May 1–2.
  • Chang, C., G. Pan, A. L. Page, and T. Asano. 2002. Developing human health-related chemical guidelines for reclaimed water and sewage sludge applications in agriculture. The Report to World Health Organization, University of California, Riverside, CA.
  • Chaturvedi, R., P. Favas, J. Pratas, M. Varun, and M. S. Paul. 2018. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal (loid) contaminated soil. Ecotoxicology and Environmental Safety 148:318–26. doi:10.1016/j.ecoenv.2017.10.048.
  • Chen, Y., X. Lim, and Z. Shen. 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–96. doi:10.1016/j.chemosphere.2004.05.044.
  • Chen, Y. X., Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Yu, G. M. Tian, and M. H. Wong. 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–11. doi:10.1016/s0045-6535(02)00223-0.
  • Cheng, S., W. Grosse, F. Karrenbrock, and M. Thoennessen. 2002. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering 18 (3):317–25. doi:10.1016/S0925-8574(01)00091-X.
  • Cherian, S., and M. M. Oliveira. 2005. Transgenic plants in phytoremediation: Recent advances and new possibilities. Environmental Science & Technology 39 (24):9377–90. doi:10.1021/es051134l.
  • da Silva Oliveira, A., A. Bocio, T. M. B. Trevilato, A. M. M. Takayanagui, J. L. Domingo, and S. I. Segura-Muñoz. 2007. Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. Environmental Science and Pollution Research-International 14 (7):483. doi:10.1065/espr2006.10.355.
  • Ernst, W. H. O. 1996. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry 11 (1–2):163–7. doi:10.1016/0883-2927(95)00040-2.
  • Esmaeili, A., F. Moore, B. Keshavarzi, N. Jaafarzadeh, and M. Kermani. 2014. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena 121:88–98. doi:10.1016/j.catena.2014.05.003.
  • Essington, M. E., and S. V. Mattigod. 1991. Trace element solid-phase associations in sewage sludge and sludge-amended soil. Soil Science Society of America Journal 55 (2):350–6. doi:10.2136/sssaj1991.03615995005500020008x.
  • Evangelou, M. W. H., M. Ebel, and A. Schaeffer. 2006. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco (Nicotiana tabacum). Chemosphere 63:996–1004. doi:10.1016/j.chemosphere.2005.08.042.
  • Fellet, G., M. Marmiroli, and L. Marchiol. 2014. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the Total Environment 468-469:598–608. doi:10.1016/j.scitotenv.2013.08.072.
  • Fitzgerald, E., J. Caffrey, S. Nesaratnam, and P. McLoughlin. 2003. Copper and lead concentrations in salt marsh plants on the Suir Estuary. Ireland Environmental Pollution 123 (1):67–74. doi:10.1016/S0269-7491(02)00366-4.
  • Garbisu, C., and I. Alkorta. 2001. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology 77 (3):229–36. doi:10.1016/S0960-8524(00)00108-5.
  • Ghafoor, A., M. Qadir, and G. Murtaza. 2004. Contaminants and the soil environment. Salt-Affected Soil. Principles of Management (p. 328). Lahore: Allied Book Centre.
  • Ghnaya, T., I. Nouairi, I. Slama, D. Messedi, C. Grignon, C. Abdelly, and M. H. Ghorbel. 2005. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology 162 (10):1133–40. doi:10.1016/j.jplph.2004.11.011.
  • Gil-Díaz, M., S. Diez-Pascual, A. González, J. Alonso, E. Rodríguez-Valdés, J. R. Gallego, and M. C. Lobo. 2016. A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 149:137–45. doi:10.1016/j.chemosphere.2016.01.106.
  • Gong, X., D. Huang, Y. Liu, Z. Peng, G. Zeng, P. Xu, M. Cheng, R. Wang, and J. Wan. 2018. Remediation of contaminated soils by biotechnology with nanomaterials: Bio-behavior, applications, and perspectives. Critical Reviews in Biotechnology 38 (3):455–68. doi:10.1080/07388551.2017.1368446.
  • Govil, P., G. Reddy, and A. Krishna. 2001. Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environmental Geology 41 (3–4):461–9. doi:10.1007/s002540100415.
  • Hamilton, A. J., F. Stagnitti, X. Xiong, S. L. Kreidl, K. K. Benke, and P. Maher. 2007. Wastewater irrigation: The state of play. Vadose Zone Journal 6 (4):823–40. doi:10.2136/vzj2007.0026.
  • Hamzenejad Taghlidabad, R., H. Khodaverdiloo, S. Manafi, and S. Rezapour. 2012. Simultaneous uptake and accumulation of sodium and cadmium or lead by three halophyte plants in two calcareous soils. Journal of Water and Soil 25:1299–309.
  • Hamzenejad Taghlidabad, R., H. Khodaverdiloo, W. W. Wenzel, and S. Rezapour. 2014. Growth and Cd accumulation of two halophytes and a non-halophyte grown in a non-saline and a saline soil with different Cd levels. Chemistry and Ecology 30 (8):743–54. doi:10.1080/02757540.2014.894988.
  • Han, F. X. 2007. Biogeochemistry of trace elements in arid environments (Vol. 13). Dordrecht, the Netherlands: Springer.
  • Han, F. X., A. Banin, Y. Su, D. L. Monts, J. M. Plodinec, W. L. Kingery, and G. E. Triplett. 2002. Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89 (11):497–504. doi:10.1007/s00114-002-0373-4.
  • Han, F. X., J. A. Hargreaves, W. L. Kingery, D. B. Huggett, and D. K. Schlenk. 2001. Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications. Journal of Environmental Quality 30 (3):912–9. doi:10.2134/jeq2001.303912x.
  • Han, F. X., W. L. Kingery, and H. M. Selim. 2001. Accumulation, redistribution, transport and bioavailability of heavy metals in waste-amended soils. In Trace Elements in Soil: Bioavailability, Fluxes and Transfer, ed. I. K. Iskander and M. B. Kirkham. Boca Raton, FL: CRC Press.
  • Han, F. X., W. L. Kingery, H. M. Selim, P. D. Gerard, M. S. Cox, and J. L. Oldham. 2004. Arsenic solubility and distribution in poultry waste and long-term amended soil. Science of the Total Environment 320 (1):51–61. doi:10.1016/S0048-9697(03)00441-8.
  • Han, F. X., W. L. Kingery, H. M. Selim, and P. Gerald. 2000. Accumulation of heavy metals in a long-term poultry waste-amended soil. Soil Science 165:260–8.
  • Han, X., X. Lu, and Y. Wu. 2014. Health risks and contamination levels of heavy metals in dusts from parks and squares of an industrial city in semi-arid area of china. International Journal of Environmental Research and Public Health 14 (8):886. doi:10.3390/ijerph14080886.
  • Han, F. X., Y. Su, D. L. Monts, M. J. Plodinec, A. Banin, and G. B. Triplett. 2003. Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90:395–401. doi:10.1007/s00114-003-0451-2.
  • Haroon, B., A. Ping, A. Pervez, and M. Irshad. 2018. Characterization of heavy metal in soils as affected by long-term irrigation with industrial wastewater. Journal of Water Reuse and Desalination 9 (1):47–56. doi:10.2166/wrd.2018.008.
  • Houben, D., L. Evrard, and P. Sonnet. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy 57:196–204. doi:10.1016/j.biombioe.2013.07.019.
  • Hu, X., J. Kang, K. Lu, R. Zhou, L. Mu, and Q. Zhou. 2014. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Scientific Reports 4 (1):1–10. doi:10.1038/srep06122.
  • Jamali, M. K., T. G. Kazi, M. B. Arain, H. I. Afridi, N. Jalbani, A. R. Memon, and A. Shah. 2007. Heavy metals from soil and domestic sewage sludge and their transfer to Sorghum plants. Environmental Chemistry Letters 5 (4):209–18. doi:10.1007/s10311-007-0101-6.
  • Jiang, J., R. K. Xu, T. Y. Jiang, and Z. Li. 2012. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials 229–230:145–50. doi:10.1016/j.jhazmat.2012.05.086.
  • Jing, J., and T. J. Logan. 1992. Effects of sewage sludge cadmium concentration on chemical extractability and plant uptake. Journal of Environmental Quality 21 (1):73–81. doi:10.2134/jeq1992.00472425002100010011x.
  • Ju, W., L. Liu, L. Fang, Y. Cui, C. Duan, and H. Wu. 2019. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety 167:218–26. doi:10.1016/j.ecoenv.2018.10.016.
  • Kamran, M. A., S. Bibi, R. Xu, S. Hussain, K. Mehmood, and H. J. Chaudhary. 2017. Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth. Journal of Geochemical Exploration 182:269–74. doi:10.1016/j.gexplo.2016.09.005.
  • Karanlık, S., N. Ağca, and M. Yalçın. 2011. Spatial distribution of heavy metals content in soils of Amik Plain (Hatay, Turkey). Environmental Monitoring and Assessment 173 (1–4):181–91. doi:10.1007/s10661-010-1380-0.
  • Karimi, A., H. Khodaverdiloo, and M. H. Rasouli-Sadaghiani. 2017a. Characterisation of growth and biochemical response of Onopordum acanthium L. under lead stress as affected by microbial inoculation. Chemistry and Ecology 33 (10):963–76. doi:10.1080/02757540.2017.1391798.
  • Karimi, A., H. Khodaverdiloo, and M. H. Rasouli-Sadaghiani. 2017b. Fungi and bacteria as helping agents for remediation of a Pb-contaminated soil by Onopordum acanthium. Caspian Journal of Environmental Sciences 15 (3):249–63.
  • Karimi, A., H. Khodaverdiloo, and M. H. Rasouli-Sadaghiani. 2017c. Influence of microbial inoculation on growth, Fe and Zn uptake and biochemical response of Hyoscyamus niger L. in lead (Pb) stress. Journal of Water and Soil 31 (5):1340–54.
  • Karimi, A., H. Khodaverdiloo, and M. H. Rasouli-Sadaghiani. 2018. Microbial‐enhanced phytoremediation of lead contaminated calcareous soil by Centaurea cyanus L. Clean - Soil, Air, Water 46 (2):1700665. doi:10.1002/clen.201700665.
  • Karimi, A., H. Khodaverdiloo, M. Sepehri, and M. H. Rasouli-Sadaghiani. 2011. Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research 5 (13):1571–6.
  • Kaveh, R., Y. S. Li, S. Ranjbar, R. Tehrani, C. L. Brueck, and B. Van Aken. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology 47 (18):10637–44. doi:10.1021/es402209w.
  • Khan, N., P. Zandi, S. Ali, A. Mehmood, and M. Adnan Shahid. 2018. Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annus. Frontiers in Microbiology 9:2507. doi:10.3389/fmicb.2018.02507.
  • Khaskhoussy, K., M. Hachicha, B. Kahlaoui, B. Messoudi-Nefzi, A. Rejeb, O. Jouzdan, and A. Arselan. 2013. Effect of treated wastewater on soil and corn crop in the Tunisian area. Journal of Applied Science Research 9 (1):132–40.
  • Khodakovskaya, M. V., K. De Silva, A. S. Biris, E. Dervishi, and H. Villagarcia. 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6 (3):2128–35. doi:10.1021/nn204643g.
  • Khodaverdiloo, H., S. Ghorbani Dashtaki, and S. Rezapour. 2012. Lead and cadmium accumulation potential and toxicity threshold determined for land cress and spinach. International Journal of Plant Production 5 (3):275–82.
  • Khodaverdiloo, H., and R. Hamzenejad Taghlidabad. 2011. Sorption and desorption of lead (Pb) and effect of cyclic wetting-drying on metal distribution in two soils with different properties. Journal of Water and Soil Science 21:149–63.
  • Khodaverdiloo, H., and R. Hamzenejad Taghlidabad. 2014. Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium album. Chemistry and Ecology 30 (3):216–26. doi:10.1080/02757540.2013.861827.
  • Khodaverdiloo, H., M. Rahmanian, S. Rezapour, S. G. Dashtaki, H. Hadi, and F. X. Han. 2012. Effect of wetting-drying cycles on redistribution of lead in some semi-arid zone soils spiked with a lead salt. Pedosphere 22 (3):304–13. doi:10.1016/S1002-0160(12)60017-4.
  • Khodaverdiloo, H., and A. Samadi. 2011. Batch equilibrium study on sorption, desorption, and immobilization of cadmium in some semiarid-zone soils as affected by soil properties. Soil Research 49 (5):444–54.
  • Khoshgoftarmanesh, A. H., and M. Kalbasi. 2002. Effect of municipal waste leachate on soil properties and growth and yield of rice. Communications in Soil Science and Plant Analysis 33 (13–14):2011–20. doi:10.1081/CSS-120005745.
  • Kim, C., Y. Lee, and S. K. Ong. 2003. Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 51:845–53. doi:10.1016/S0045-6535(03)00155-3.
  • Kim, Y. Y., Y. Y. Yang, and Y. Lee. 2002. Pb and Cd uptake in rice roots. Physiologia Plantarum 116 (3):368–72. doi:10.1034/j.1399-3054.2002.1160312.x.
  • Krishna, A. K., and P. K. Govil. 2008. Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environmental Geology 54 (7):1465–72. doi:10.1007/s00254-007-0927-z.
  • Kumar, A., and J. P. Verma. 2018. Does plant—Microbe interaction confer stress tolerance in plants: A review. Microbiological Research 207:41–52. doi:10.1016/j.micres.2017.11.004.
  • Lebrun, M., C. Macri, F. Miard, N. Hattab-Hambli, M. Motelica-Heino, D. Morabito, and S. Bourgerie. 2017. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. Journal of Geochemical Exploration 182:149–56. doi:10.1016/j.gexplo.2016.11.016.
  • Lee, Y., C. Ryu, Y. K. Park, J. H. Jung, and S. Hyun. 2013. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae. Bioresource Technology 130:345–50. doi:10.1016/j.biortech.2012.12.012.
  • Lehmann, J., and S. Joseph. 2015. Biochar for environmental management: An introduction. In Biochar for environmental management science, technology and implementation, eds. J. Lehmann and S. Joseph. New York, NY: Routledge. doi:10.1016/j.forpol.2009.07.001.
  • Li, H., X. Li, L. Xiang, H. M. Zhao, Y. W. Li, Q. Y. Cai, L. Zhu, C. H. Mo, and M. H. Wong. 2018. Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Science of the Total Environment 613–614:447–55. doi:10.1016/j.scitotenv.2017.09.066.
  • Li, X., and C. Huang. 2007. Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, PR China. Environmental Geology 52 (8):1631–7. doi:10.1007/s00254-006-0608-3.
  • Lionel, S., and R. J. Karunakaran. 2017. Effect of biochar application on the chromium uptake of Canna indica L. from chromium spiked soil. Journal of Pharmacognosy and Phytochemistry 6 (4):146–52.
  • Loebenstein, J. R. 1994. The materials flow of arsenic in the United States. Washington, DC: Bureau of Mines.
  • López-Chuken, U. J., S. D. Young, and M. N. Sanchez-Gonzalez. 2010. The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: Testing a “free ion activity model” and implications for phytoremediation. International Journal of Phytoremediation 12 (7):680–96. doi:10.1080/15226510903353161.
  • López-Luna, J., M. J. Silva-Silva, S. Martinez-Vargas, O. F. Mijangos-Ricardez, M. C. González-Chávez, F. A. Solís-Domínguez, and M. C. Cuevas-Díaz. 2016. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Science of the Total Environment 565:941–50. doi:10.1016/j.scitotenv.2016.01.029.
  • Lu, K., X. Yang, J. Shen, B. Robinson, H. Huang, D. Liu, N. Bolan, J. Pei, and H. Wang. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment 191:124–32. doi:10.1016/j.agee.2014.04.010.
  • Lu, W., W. Ding, J. Zhang, Y. Li, J. Luo, N. Bolan, and Z. Xie. 2014. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biology and Biochemistry 76:12–21. doi:10.1016/j.soilbio.2014.04.029.
  • Ma, Y., M. Rajkumar, R. S. Oliveira, C. Zhang, and H. Freitas. 2019. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. Journal of Hazardous Materials 379:120813. doi:10.1016/j.jhazmat.2019.120813.
  • Ma, Y., M. Rajkumar, C. Zhang, and H. Freitas. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174:14–25. doi:10.1016/j.jenvman.2016.02.047.
  • Maestri, E., and N. Marmiroli. 2011. Transgenic plants for phytoremediation. International Journal of Phytoremediation 13 (1):264–79. doi:10.1080/15226514.2011.568549.
  • Mahar, A., P. Wang, A. Ali, M. K. Awasthi, A. H. Lahori, Q. Wang, R. Li, and Z. Zhang. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety 126:111–21. doi:10.1016/j.ecoenv.2015.12.023.
  • Mahohi, A., and F. Raiesi. 2019. Functionally dissimilar soil organisms improve growth and Pb/Zn uptake by Stachys inflata grown in a calcareous soil highly polluted with mining activities. Journal of Environmental Management 247:780–9. doi:10.1016/j.jenvman.2019.06.130.
  • Major, J., M. Rondon, D. Molina, S. J. Riha, and J. Lehmann. 2010. Maize yield and nutrition after 4 years of doing biochar application to a Colombian savanna oxisol. Plant and Soil 333 (1–2):117–28. doi:10.1007/s11104-010-0327-0.
  • Manousaki, E., J. Kadukova, N. Papadantonakis, and N. Kalogerakis. 2008. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environmental Research 106 (3):326–32. doi:10.1016/j.envres.2007.04.004.
  • Manousaki, E., and N. Kalogerakis. 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial & Engineering Chemistry Research 50 (2):656–60. doi:10.1021/ie100270x.
  • Manzoor, M., I. Gul, I. Ahmed, M. Zeeshan, I. Hashmi, B. A. Zafar Amin, J. Kallerhoff, and M. Arshad. 2019. Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere 227:561–9. doi:10.1016/j.chemosphere.2019.04.093.
  • McGrath, S. P., and J. Cegarra. 1992. Chemical extractability of heavy metals during and after long term applications of sewage sludge to soil. Journal of Soil Science 43 (2):313–21. doi:10.1111/j.1365-2389.1992.tb00139.x.
  • McLaughlin, M. J., L. T. Palmer, K. G. Tiller, T. A. Beech, and M. K. Smart. 1994. Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality 23 (5):1013–8. doi:10.2134/jeq1994.00472425002300050023x.
  • McLean, J. E., and B. E. Bledso. 1992. Behaviour of metals in soils. Washington, DC: Environmental Protection Agency.
  • Meers, E., A. Ruttens, M. J. Hopgood, D. Samson, and F. M. G. Tack. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–22. doi:10.1016/j.chemosphere.2004.09.047.
  • Méndez, A., A. Gómez, J. Paz-Ferreiro, and G. Gasco. 2012. Effects of biochar from sewage sludge pyrolysis on Mediterranean agricultural soils. Chemosphere 89:1354–9. doi:10.1016/j.chemosphere.2012.05.092.
  • Mitch, M. L. 2002. Phytoextraction of toxic metals: A review of biological mechanism. Journal of Environmental Quality 31 (1):109–20.
  • Mokarram-Kashtiban, S., S. M. Hosseini, M. T. Kouchaksaraei, and H. Younesi. 2019. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Environmental Science and Pollution Research 26 (11):10776–89. doi:10.1007/s11356-019-04411-y.
  • Mortvedt, J. J., and J. D. Beaton. 1995. Heavy metal and radionuclide contaminants in phosphate fertilizers. In Phosphorus in the global environment: transfer, cycles and management, ed. H. Tiessen, 93–106. New York, NY: Wiley.
  • Nadeem, S. M., M. Ahmad, Z. A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32 (2):429–48. doi:10.1016/j.biotechadv.2013.12.005.
  • Nazarpour, A., M. J. Watts, A. Madhani, and S. Elahi. 2019. Source, spatial distribution and pollution assessment of Pb, Zn, Cu, and Pb, isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Scientific Reports 9 (1):1–11. doi:10.1038/s41598-019-41787-w.
  • Nigam, R., S. Srivastava, S. Prakash, and M. M. Srivastava. 2001. Cadmium mobilisation and plant availability–the impact of organic acids commonly exuded from roots. Plant and Soil 230 (1):107–13. doi:10.1023/A:1004865811529.
  • Ogundiran, M. B., N. S. Mekwunyei, and S. A. Adejumo. 2018. Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. Journal of Environmental Chemical Engineering 6 (2):2206–13. doi:10.1016/j.jece.2018.03.025.
  • Padmavathiamma, P. K., and L. Y. Li. 2007. Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution 184 (1–4):105–26. doi:10.1007/s11270-007-9401-5.
  • Pan, F., Q. Meng, S. Luo, J. Shen, B. Chen, K. Y. Khan, J. Japenga, X. Ma, X. Yang, and Y. Feng. 2017. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. International Journal of Phytoremediation 19:281–9. doi:10.1080/15226514.2016.1225280.
  • Park, J. H., G. K. Choppala, N. S. Bolan, J. W. Chung, and T. Chuasavathi. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil 348 (1–2):439–51. doi:10.1007/s11104-011-0948-y.
  • Paz-Ferreiro, J., H. Lu, S. Fu, A. Méndez, and G. Gascó. 2013. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth Discussions 5 (2):2155–79. doi:10.5194/sed-5-2155-2013.
  • Pérez-Sirvent, C., M. J. Martínez-Sánchez, M. L. García-Lorenzo, J. Molina, and M. L. Tudela. 2009. Geochemical background levels of zinc, cadmium and mercury inanthropically influenced soils located in a semi-arid zone (SE, Spain). Geoderma 148 (3–4):307–17. doi:10.1016/j.geoderma.2008.10.017.
  • Pichardo, S. T., Y. Su, and F. X. Han. 2012. The potential effects of arbuscular mycorrhizae (AM) on the uptake of heavy metals by plants from contaminated soils. Journal of Bioremediation and Biodegradation 3: E124.
  • Pinter, M. I. F., M. V. Salomon, F. Berli, R. Gil, R. Bottini, and P. Piccoli. 2018. Plant growth promoting rhizobacteria alleviate stress by AsIII in grapevine. Agriculture, Ecosystems and Environment 267:100–8. doi:10.1016/j.agee.2018.08.015.
  • Pivetz, B. E. 2001. Phytoremediation of contaminated soil and ground water at hazardous waste sites. Washington, DC: US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response.
  • Prapagdee, S., S. Piyatiratitivorakul, and A. Petsom. 2014. Activation of cassava stem biochar by physico-chemical method for stimulating cadmium removal efficiency from aqueous solution. Environment Asia 7 (2):60–9.
  • Qadir, M., D. Wichelns, L. Raschid-Sally, P. G. McCornick, P. Drechsel, A. Bahri, and P. S. Minhas. 2010. The challenges of wastewater irrigation in developing countries. Agricultural Water Management 97 (4):561–8. doi:10.1016/j.agwat.2008.11.004.
  • Qin, Y., I. S. Druzhinina, X. Pan, and Z. Yuan. 2016. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances 34 (7):1245–59. doi:10.1016/j.biotechadv.2016.08.005.
  • Qurashi, A. W., and A. N. Sabri. 2012. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology 43 (3):1183–91. doi:10.1590/S1517-83822012000300046.
  • Rabinovitch, A. 2010. Arid Israel recycles waste water on a grand scale. London, UK: Reuters.
  • Ramos, M. C., and M. López-Acevedo. 2004. Zinc levels in vineyard soils from the Alt Penedès-Anoia region (NE Spain) after compost application. Advances in Environmental Research 8 (3–4):687–96. doi:10.1016/S1093-0191(03)00041-8.
  • Rasouli-Sadaghiani, M. H., M. Barin, H. Khodaverdiloo, S. S. Moghaddam, C. A. Damalas, and S. Kazemalilou. 2019. Arbuscular mycorrhizal fungi and rhizobacteria promote growth of Russian knapweed (Acroptilon repens L.) in a Cd-contaminated soil. Journal of Plant Growth Regulation 38 (1):113–21. doi:10.1007/s00344-018-9815-x.
  • Rastegari Mehr, M. R., B. Keshavarzi, F. Moore, R. Sharifi, A. Lahijanzadeh, and M. Kermani. 2017. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. Journal of African Earth Sciences 132:16–26. doi:10.1016/j.jafrearsci.2017.04.026.
  • Razzaghi, S., H. Khodaverdiloo, and S. Ghorbani Dashtaki. 2016. Effects of long-term wastewater irrigation on soil physical properties and performance of selected infiltration models in a semi-arid region. Hydrological Sciences Journal 61 (10):1778–90. doi:10.1080/02626667.2015.1051981.
  • Rezapour, S., A. Samadi, and H. Khodaverdiloo. 2011. An investigation of the soil property changes and heavy metal accumulation in relation to long-term wastewater irrigation in the semi-arid region of Iran. Soil and Sediment Contamination: An International Journal 20 (7):841–56. doi:10.1080/15320383.2011.609202.
  • Rieuwerts, J. S., I. Thornton, M. E. Farago, and M. R. Ashmore. 1998. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation & Bioavailability 10 (2):61–75. doi:10.3184/095422998782775835.
  • Roca, N., M. S. Pazos, and J. Bech. 2012. Background levels of potentially toxic elements in soils: A case study in Catamarca (a semiarid region in Argentina). Catena 92:55–66. doi:10.1016/j.catena.2011.11.009.
  • Romic, M., and D. Romic. 2003. Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology 43 (7):795–805. doi:10.1007/s00254-002-0694-9.
  • Roy, M., and L. M. McDonald. 2015. Metal uptake in plants and health risk assessments in metal contaminated smelter soils. Land Degradation & Development 26 (8):785–92. doi:10.1002/ldr.2237.
  • Ruiz-Lozano, J. M., R. Aroca, Á. M. Zamarreño, S. Molina, B. Andreo‐Jiménez, R. Porcel, J. M. Garcia-Mina, C. Ruyter-Spira, and J. A. López‐Ráez. 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell and Environment 39 (2):441–52. doi:10.1111/pce.12631.
  • Said, I., S. A. E. R. Salman, Y. Samy, S. A. Awad, A. Melegy, and A. S. Hursthouse. 2019. Environmental factors controlling potentially toxic element behaviour in urban soils, El Tebbin, Egypt. Environmental Monitoring and Assessment 191 (5):267. doi:10.1007/s10661-019-7388-1.
  • Salido, A. L., K. L. Hasty, J. M. Lim, and D. J. Butcher. 2003. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). International Journal of Phytoremediation 5 (2):89–103. doi:10.1080/713610173.
  • Salt, D. E., M. Blaylock, P. B. A. Nanda Kumar, V. Dushenkov, B. D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–74. doi:10.1038/nbt0595-468.
  • Santana, N. A., P. A. A. Ferreira, C. P. Tarouco, I. S. Schardong, Z. I. Antoniolli, F. T. Nicoloso, and R. J. Jacques. 2019. Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. Ecotoxicology and Environmental Safety 182:109383. doi:10.1016/j.ecoenv.2019.109383.
  • Sarathambal, C., P. J. Khankhane, Y. Gharde, B. Kumar, M. Varun, and S. Arun. 2017. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. International Journal of Phytoremediation 19 (4):360–70. doi:10.1080/15226514.2016.1225289.
  • Sarwar, N., M. Imran, M. R. Shaheen, W. Ishaque, M. A. Kamran, A. Matloob, A. Rehim, and S. Hussain. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171:710–21. doi:10.1016/j.chemosphere.2016.12.116.
  • Shani, U., and L. M. Dudley. 2001. Field studies of crop response to water and salt stress. Soil Science Society of America Journal 65 (5):1522–8. doi:10.2136/sssaj2001.6551522x.
  • Singh, J., and B. K. Lee. 2016. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management 170:88–96. doi:10.1016/j.jenvman.2016.01.015.
  • Singh, O. V., S. Labana, G. Pandey, R. Budhiraja, and R. K. Jain. 2003. Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology 61 (5–6):405–12. doi:10.1007/s00253-003-1244-4.
  • Singh, S., V. Kumar, G. K. Sidhu, S. Datta, D. S. Dhanjal, B. Koul, H. S. Janeja, and J. Singh. 2019. Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatalysis and Agricultural Biotechnology 17:665–71. doi:10.1016/j.bcab.2019.01.035.
  • Snyder, C. 2005. The dirty work of promoting “recycling” of America’s sewage sludge. International Journal of Occupational and Environmental Health 11 (4):415–27. doi:10.1179/oeh.2005.11.4.415.
  • Tang, Y., J. Tian, S. Li, C. Xue, Z. Xue, D. Yin, and S. Yu. 2015. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Science of the Total Environment 532:154–61. doi:10.1016/j.scitotenv.2015.05.081.
  • Tiller, K. G., and R. H. Merry. 1981. Copper pollution of agricultural soils. In Copper in soils and plants. San Diego, CA: Academic Press.
  • Tiwari, S., and C. Lata. 2018. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science 9:452. doi:10.3389/fpls.2018.00452.
  • Tripathi, D. K., V. P. Singh, S. M. Prasad, D. K. Chauhan, and N. K. Dubey. 2015. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry 96:189–98. doi:10.1016/j.plaphy.2015.07.026.
  • Uchimiya, M., I. M. Lima, K. T. Klasson, and L. H. Wartelle. 2010. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 80:935–40. doi:10.1016/j.chemosphere.2010.05.020.
  • Vangronsveld, J., R. Herzig, N. Weyens, J. Boulet, K. Adriaensen, A. Ruttens, T. Thewys, A. Vassilev, E. Meers, E. Nehnevajova, et al. 2009. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research 16 (7):765–94. doi:10.1007/s11356-009-0213-6.
  • Vimal, S. R., J. S. Singh, N. K. Arora, and S. Singh. 2017. Soil-plant-microbe interactions in stressed agriculture management: A review. Pedosphere 27 (2):177–92. doi:10.1016/S1002-0160(17)60309-6.
  • Wang, Y., Z. Fang, Y. Kang, and E. P. Tsang. 2014. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Journal of Hazardous Materials 275:230–7. doi:10.1016/j.jhazmat.2014.04.056.
  • Welch, A. H., S. A. Watkins, D. R. Helsel, and M. F. Focazio. 2000. Arsenic in groundwater resources of the United States. Geological Survey Fact Sheet FS-063-00.
  • Wenzel, W. W., W. E. H. Blum, A. Brandstetter, F. Jockwer, A. Köchl, M. Oberforster, E. H. Oberländer, C. Riedler, K. Roth, and I. Vladeva. 1996. Effects of soil properties and cultivar on cadmium accumulation in wheat grain. Zeitschrift Für Pflanzenernährung Und Bodenkunde 159 (6):609–14. doi:10.1002/jpln.1996.3581590613.
  • Wu, S., S. Zhou, X. Li, T. Jackson, and Q. Zhu. 2011. An approach to partition the anthropogenic and natural components of heavy metal accumulations in roadside agricultural soil. Environmental Monitoring and Assessment 173:871–81. doi:10.1007/s10661-010-1430-7.
  • Yang, W. W., A. J. Miao, and L. Y. Yang. 2012. Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One. 7 (3):e32300. doi:10.1371/journal.pone.0032300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.