106
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and Hardware Implementation on the FPGA of a Variable Structure Control Associated with a DTC-SVM of an Induction Motor

, , &
Pages 1806-1821 | Received 29 Jan 2016, Accepted 14 Jun 2017, Published online: 16 Jan 2018

References

  • Takahashi, I., and Noguchi, T., “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Ind. Appl., Vol. 22, No. 5, pp. 820–827, 1986.
  • Jidin, A. et al., “Torque ripple minimization in DTC induction motor drive using constant frequency torque controller,” Proc. Int. Conf. Electr. Machines Syst., pp. 919–924, 2010.
  • Idris, N. R. N., and Yatim, A. H. M., “Reduced torque ripple and constant torque switching frequency strategy for direct torque control of induction machine,” in Proceedings of the 15th Annual IEEE Applied Power Electronics Conference and Exposition (APEC’00), pp. 154–161, New Orleans, La, USA, February 2000.
  • Shyu, K. K., Lin, J. K., Pham, V. T., Yang, M. J., and Wang, T. W., “Global minimum torque ripple design for direct torque control of induction motor drives,” IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3148–3156, 2010.
  • Krim, S., Gdaim, S., Mtibaa, A., and Mimouni, M. F., “Design and implementation of direct torque control based on an intelligent technique of induction motor on FPGA”. J. Electri. Eng. Technol., Vol. 10, No. 4, pp. 1527–1539, 2015.
  • Mir, S., and Elbuluk, M. E., “Precision torque control in inverter-fed induction machines using fuzzy logic,” in Power Electronics Specialists Conference, 1995. PESC '95 Record., 26th Annual IEEE, Vol. 1, pp. 396–401, 1995
  • Jun-Koo, K., and Seung-Ki, S., “New direct torque control of induction motor for minimum torque ripple and constant switching frequency,” IEEE Trans. Ind. Appl., Vol. 35, pp. 1076–1082, 1999.
  • Azli, N. A., Nordin, N. M., and Idris, N. R. N., “Direct torque control of multilevel inverterfed induction machines—a survey,” J. Theor. Appl. Info. Technol., Vol. 41, No. 2, pp. 181–191, 2012.
  • Krishna, C. H., Amarnath, J., and Kamakshiah, S., “A simplified SVPWM algorithm for multi-level inverter fed DTC of induction motor drive,” Int. J. Eng. Innovat. Technol., Vol. 1, No. 4, pp. 61–67, 2012.
  • Didarul Islam, Md., Reza, C. M. F. S., and Mekhilef, S., “Modeling and experimental validation of 5-level hybrid H-bridge multilevel inverter Fed DTC-IM drive,” J. Electr. Eng. Technol., Vol. 10, No. 2, pp. 574–585, 2015.
  • Tripathi, A., Khambadkone, A. M., and Panda, S. K., “Torque ripple analysis and dynamic performance of a space vector modulation based control method for AC-drives,” IEEE T. Power Electr., Vol. 20, pp. 485–492, 2005.
  • Krim, Saber, Gdaim, Soufien, Mtibaa, Abdellatif, and Faouzi Mimouni, Mohamed, “FPGA implementation of the Direct Torque Control with constant switching frequency of induction motor,” IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD2015), Mahdia, Tunisia. 2015.
  • Joseline Metilda, A., Arunadevi, R., Ramesh, N., and Sharmeela, C., “Analysis of direct torque control using space vector modulation for three phase induction motor,” Rec. Res. Sci. Technol., Vol. 3, No. 7, pp. 37–40, 2011.
  • Adamidis, G., Koutsogiannis, Z., and Vagdatis, P., “Investigation of the performance of a variable-speed drive using direct torque control with space vector modulation,” Elect. Power Compon. Syst., Vol. 39, No. 12, pp. 1227–1243, 2011.
  • Wong, K. C., Ho, S. L. and Cheng, K. W. E., “Direct torque control of doubly-fed induction generator with space vector modulation,” Elect. Power Comp. Syst., Vol. 36, No. 12, pp. 1337–1350, 2008.
  • Rashag, H. F., Koh, S. P., Chong, K. H., Tiong, S. K., Tan, N. M. L., and Abdalla, A. N., “High performance of space vector modulation direct torque control SVM-DTC based on amplitude voltage and stator flux angle,” Res. J. Appl. Sci. Eng. Technol., Vol. 5, No. 15, pp. 3934–3940, 2013.
  • Venkateswarlu, K., Sandeep, G., Srinivas, N., and Damodara R. K., “Speed sensor-less sliding mode control of induction motor using simulink,” IOSR J. Electr. Electron. Eng. (IOSR-JEEE), Vol. 6, No. 2, pp. 50–56, 2013.
  • Yan, Zhang, Jin, Changxi, and Utkin, V. I., “Sensorless sliding-mode control of induction motors,” IEEE Trans. Ind. Electron., Vol. 47, No. 6, pp. 1286–1297, 2000.
  • Boucheta, A., Bousserhane, I. K., Hazzab, A., Sicard, P., and Fellah, M. K., “Speed control of linear induction motor using sliding mode controller considering the end effects,” J. Electr. Eng. Technol., Vol. 7, No. 1, pp. 34–45, 2012.
  • Sidani, Maher, Mrad, Fouad and Chaaban, Farid., “Adaptive direct torque control of induction motors,” Electr. Power Comp. Syst., Vol. 36, No. 7, pp. 696–718, 2008.
  • Wu, L., Su, X., and Shi, P., “Output feedback control of Markovian jump repeated scalar nonlinear systems,” IEEE Trans. Automat. Contr., Vol. 59, No. 1, pp. 199–204, 2014.
  • Li, F., Shi, P., Wu, L., and Zhang, X., “Fuzzy-model-based D-stability and non-fragile control for discrete-time descriptor systems with multiple delays,” IEEE Trans. Fuzzy Syst., Vol. 22, No. 4, pp. 1019–1025, 2013.
  • Li, F., Wu, L., and Shi, P., “Stochastic stability of semi-Markovian jump systems with mode-dependent delays,” Int. J. Robust Nonlin. Contr., Vol. 24, No. 18, pp. 3317–3330, 2014.
  • Bose, B. K., and Szczesny, P. M., “A microcomputer-based control and simulation of an advanced IPM synchronous machine drive system for electric vehicle propulsion,” IEEE Trans. Ind. Electron., Vol. 35, No. 4, pp. 547–559, November 1988.
  • Lianbing, L. et al., “A high-performance direct torque control based on DSP in permanent magnet synchronous motor drive,” in Proc. 4th World Congress Intell. Control Automat., Vol. 2, pp. 1622–1625, 2002.
  • Cruz, S. M. A. et al., “DSP implementation of the multiple reference frames theory for the diagnosis of stator faults in a DTC induction motor drive,” IEEE Trans. Energy Convers., Vol. 20, pp. 329–335, 2005.
  • Kostić, Vojkan, Petronijević, Milutin, Mitrović, Nebojša, Banković, Bojan, “Experimental verification of direct torque control methods for electric drive application”, Automat. Contr. Robot., Vol. 8, No 1, pp. 111–126, 2009.
  • Singh, Bhoopendra, Jain, Shailendra, and Dwivedi, Sanjeet, “Experimental direct torque control induction motor drive with modified flux estimation and speed control algorithm,” IOSR J. Eng., Vol. 2, No. 6, pp. 1296–1300, 2012.
  • Boussak, M., and Jarray, K., “A high-performance sensorless indirect stator flux orientation control of induction motor drive,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 14–49, 2006.
  • Idris, N. R. N., Chuen, L. T., and Elbuluk, M. E., “A new torque and flux controller for direct torque control of induction machines,” IEEE Trans. Ind. Appl., Vol. 42, No. 6, pp. 1358–1366, 2006.
  • Hasanien, H. M., “FPGA implementation of adaptative ANN controller for speed regulation of permanent stepper motor drives,” Energy Convers. Manage., Vol. 52, No. 2, pp. 1252–1257, 2011.
  • Monmasson, E., Idkhajine, L., Cirstea, M. N., Bahri, I., Tisan, A., and Naouar, M. W., “FPGAs in industrial control applications,” IEEE Trans. Ind. Inform., Vol. 7, No. 2, pp. 224–243. 2011.
  • Dagbagi, M., Idkhajine, L., Monmasson, E., and Slama-Belkhodja, I., “FPGA implementation of power electronic converter real-time model,” Int. Symposium Power Electron. Electr. Drives Automat. Motion, pp. 658–663, 2012. DOI: 10.1109/SPEEDAM.2012.6264543.
  • Monmasson, E., Bahri, I., Idkhajine, L., Maalouf, A., and Naouar, M. W. Recent Advancements in FPGA-based controllers for AC Drives Applications. 13th Int. Conf. Optim. Electr. Electron. Equip. (OPTIM), IEEE, pp. 8–15, 24–26 May 2012.
  • Shahbazi, M., Poure, P., Saadate, S., and Zolghadri, M. R., “FPGA-based reconfigurable control for fault- tolerant back-to-back converter without redundancy,” IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 3360–3371, 2013.
  • Jezernik, K., Korelic, J., and Horvat, R., “PMSM sliding mode FPGA-based control for torque ripple reduction,” IEEE Trans. power Electron., Vol. 28, No. 7, pp. 3549–3556, 2013.
  • Sutikno, T., Idris, N. R., Jidin, A., and Cirstea, M. N., “An improved FPGA implementation of direct torque control for induction machines,” IEEE Trans. Ind. Inform., Vol. 9, No. 3, pp. 1272–1279, 2013.
  • Fons,  , Fons, M., Cantó, F., and  , E., “Fingerprint image processing acceleration through run-time reconfigurable hardware circuits and systems II,” IEEE Trans Express Briefs, Vol. 57, No. 12, pp. 991–995, 2010.
  • Krim, Saber, Gdaim, Soufien, Mtibaa, Abdellatif, and Faouzi Mimouni, Mohamed., “FPGA contribution in photovoltaic pumping systems: models of MPPT and DTC-SVM algorithms, Int. J. Renew. Energy Res. (IJRER), Vol. 6, No. 3, pp. 866–879, 2016.
  • Madani, N., Benkhoris, M. F., Siala, S., and Mahmoudi, M. O., “Sliding mode control of an asynchronous motor drive,” Power Electron. Variable Speed Drives, Conf. Publ. No. 456, pp. 341–346, Sept. 1998.
  • Carmeli, M. S., and Mauri, M., “Direct torque control as variable structure control: existence conditions verification and analysis,” Electr. Power Sys. Res., Vol. 81, No. 6, pp. 1188–1196, 2011.
  • Abdelfatah, N., Abdeldjebar, H., Bousserhane, I. K., Hadjeri, S., and Sicard, P., “Two wheel speed robust sliding mode control for electric vehicle drive,” Serbian J. Electr. Eng., Vol. 5, No. 2, pp. 199–216, 2008.
  • Sivert A., Betin F., Faqir A., and Capolino G. A., “Robust control of an induction machine drive using a time-varying sliding surface,” 2004 IEEE Int. Symp. Ind. Electron., Vol. 2, pp. 1369–1374, 2004.
  • Perruquetti, W., and Barbot, J. P., “Sliding Mode Control in Engineering,” Edition Marcel Dekker, ISBN 0-8247-0671-4, 2002.
  • Gao, Weibing, Wang, Yufu, and Homaifa, Abdollah, “Discrete-time variable structure control systems,” IEEE Trans. Ind. Electron., Vol. 42, No. 2, pp. 117–122, 1995.
  • UTKIN, V. I., “Variable structure systems with sliding modes,” IEEE Trans. Autom. Control, Vol. 22, No. 2, pp. 212–222, 1977.
  • Faqir A., Betin F., Chrifi Alaoui L., Nahid B., and Pinchon D., “Varying sliding surface control of an induction machine drive,” Control Applications, Proceedings of 2003 IEEE Conference on Vol. 1, pp. 93–98 23–25, 2003.
  • Hung, J. Y., Gao, W., and Hung, J. C., “Variable structure control: a survey,” IEEE Trans. Ind. Electron., Vol. 40, No. 1, Feb. 1993.
  • Utkin, V., “Sliding mode control design principles and application to electric drives,” IEEE Trans. Ind. Appl., Vol. 40, No. 1, pp. 23–36, 1993.
  • Young, K. D., Utkin, V. I., and Ozguner, U., “A control engineer's guide to sliding mode control,” IEEE Trans. Control Syst. Technol. Vol. 7, No. 3, pp. 328–342, 1999.
  • Mahmoudi, M. O., Madani, N., Ben Khouris, M. F., and Boudjemaa, F., “Cascade sliding mode control of a field oriented induction machine drive,” Eur. Phys. J., Appl. Phys. EDP Sci., Vol. 7, pp. 3, pp. 277–225, 1999.
  • Srirattanawichaikul, W., Kumsuwan, Y., and Premrudeepreechacharn, S., “Reduction of torque ripple in direct torque control for induction motor drives using decoupled amplitude and angle of stator flux control,” ECTI Trans. Electr. Eng, Electron, Commun., Vol. 8, No. 2, pp.187–196, 2010.
  • XSG, 1998. Xilinx system generator v2.1 basic tutorial. Printed in USA, http://bwrcs.eecs.berkeley.edu/ Classes/cs152/handouts/Tutorials_book.pdf.
  • Mailloux, J. G.; Prototypage Rapide de la Commande Vectorielle sur FPGA à l'Aide des Outils SIMULINK SYSTEM GENERATOR, l'Université de Québec, Mars 2008;
  • Krim, Saber, Gdaim, Soufien, Mtibaa, Abdellatif, and Faouzi Mimouni, Mohamed, “Hardware implementation of a predictive DTC-SVM with a sliding mode observer of an induction motor on the FPGA,” WSEAS TRANSACTIONS on SYSTEMS and CONTROL, Vol. 10, pp. 249–269, 2015.
  • Spartan®-6 LX150T Development Kit Hardware Co-Simulation Reference Design Tutorial.pdf.
  • Saidani, T., Dia, D., Elhamzi, W., Atri, M., and Tourki, R., “Hardware co-simulation for video processing using xilinx system generator,” Proceed. World Cong. Eng., Vol. I, London, U.K, July 1–3, 2009.
  • XILINX, ML506 DSP Hardware Co-Simulation with Xilinx System Generator for DSP 9.1i, August 2007.
  • Motor control with STM32®32-bit ARM®-based MCU. Pdf. http://www.st.com/web/en/resource/sales_and_marketing/promotional_material/brochure/brstm32mc.pdf.
  • STM32 embedded target for MATLAB and Simulink, http://www.st.com/st-web-ui/static/active/en/resurce/technical/document/data_brief/DM00080897.pdf.
  • Menghal, P. M., and Jaya Laxmi, A., “Real time control of electrical machine and drives: a review”. Int. J. Adv. Electr. Eng. Technol., Vol. 1, No. 4, pp. 112–126, 2011.
  • Hmidet, A., Dhifaoui, R., and Hasnaoui, O., “Development, implementation and experimentation on a dSPACE DS1104 of a direct voltage control scheme,” J. Power Electron., Vol. 10, No. 5, pp. 468–476, 2010.
  • Abbou, A., Nasser, T., Mahmoudi, H., Akherraz1, M., and Essadki, A., “dSPACE IFOC fuzzy logic controller implementation for induction motor drive,” J. Electr. Sys., Vol. 8, No. 3, pp. 317–327, 2012.
  • Low Cost FPGA Based Replacement for dSPACE Units in the Electric Drives Laboratory, http://cusp.umn.edu/ Napa_2013/Friday/Tom_P_Napa.pdf.
  • Monmasson, E., and Cirstea, M., “FPGA design methodology for industrial control systems: a review,” IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 1824–1842, August. 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.