4,571
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Fault Location Observability Using Phasor Measurement Units in a Power Network Through Deterministic and Stochastic Algorithms

Pages 212-229 | Received 14 Jun 2017, Accepted 20 Jan 2019, Published online: 04 Mar 2019

References

  • A. G. Phadke, and J. S. Thorp, Synchronized Phasor Measurements and Their Applications. New York: Springer, 2008.
  • N. M. Manousakis, G. N. Korres, and P. S. Georgilakis, “Taxonomy of PMU placement methodologies,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1070–1077, 2012.
  • X. S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications. Hoboken, NJ: John Willey and Sons, 2010.
  • B. Xu, and A. Abur, “Observability analysis and measurement placement for systems with PMUs,” presented at the Proceedings of 2004 IEEE PES Power Systems Conference and Exposition, vol. 2, Oct. 10–13 2004, pp. 943–946.
  • B. Gou, “Optimal placement of PMUs by integer linear programming,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1525–1526, 2008. DOI:10.1109/TPWRS.2008.926723.
  • D. Dua, S. Dambhare, R. K. Gajbhive, and S. A. Soman, “Optimal multistage scheduling of PMU placement: an ILP approach,” IEEE Trans. Power Del., vol. 23, no. 4, pp. 1812–1820, 2008.
  • P.-L. Poirion, S. Toubaline, C. D. Ambrosio, and L. Liberti, “The power edge set problem,” Network Int. J., vol. 68, no. 2, pp. 104–120, 2016.
  • N. P. Theodorakatos, “Optimal phasor measurement unit placement for numerical observability using a two-phase branch-and-bound algorithm,” Int. J. Emerg. Electr. Power Syst., vol. 19, no. 3, pp. 1–25, 2018.
  • A. Pal, A. K. S. Vullikanti, and S. S. Ravi, “A PMU placement scheme considering realistic costs and modern trends in relaying,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 552–561, 2017.
  • N. P. Theodorakatos, N. M. Manousakis, and G. N. Korres, “Optimal PMU placement using nonlinear programming,” presented at the OPT-i—An International Conference on Engineering and Applied Sciences Optimization, Kos Island, Greece, 2014, pp. 240–258.
  • N. P. Theodorakatos, N. M. Manousakis, and G. N. Korres, “A sequential quadratic programming method for contingency constrained phasor measurement unit placement,” Int. Trans. Electr. Energy Syst., vol. 25, no. 12, pp. 3185–3211, 2015. DOI:10.1002/etep.2027.
  • N. P. Theodorakatos, N. M. Manousakis, and G. N. Korres, “Optimal placement of phasor measurement units with linear and non‐linear models,” Electric Power Compon. Syst., vol. 43, no. 4, pp. 357–373, 2015. DOI:10.1080/15325008.2014.981319.
  • G. N. Korres, N. M. Manousakis, T. C. Xygkis, and J. Lofberg, “Optimal phasor measurement unit placement for numerical observability in the presence of conventional measurement using semi-definite programming,” IET Gener. Transm. Distrib., vol. 9, no. 15, pp. 2427–2436, 2015. DOI:10.1049/iet-gtd.2015.0662.
  • N. C. Koutsoukis, N. M. Manousakis, P. S. Georgilakis, and G. N. Korres, “Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method,” IET Gener. Transm. Distrib., vol. 7, no. 4, pp. 347–356, 2013. DOI:10.1049/iet-gtd.2012.0377.
  • C. Mishra, K. D. Jones, A. Pal, and V. Centeno, “Binary particle swarm optimisation-based optimal substation coverage algorithm for phasor measurement unit installations in practical systems,” IET Gener. Transm. Distrib., vol. 10, no. 2, pp. 1–8, 2016.
  • R. Babu, and B. Bhattacharyya, “Optimal allocation of phasor measurement unit for full observability of the connected power network,” Electr. Power Energy Syst., vol. 79, pp. 89–97, 2016. DOI:10.1016/j.ijepes.2016.01.011.
  • S. Zhu, L. Wu, S. Mousavian, and J. H. Roh, “An optimal joint placement of PMUs and flow measurements for ensuring power system observability under N-2 transmission contingencies,” Int. J. Electr. Power Energy Syst., vol. 96, pp. 254–265, 2018. DOI:10.1016/j.ijepes.2017.08.025.
  • M. Korkali, and A. Abur, “Placement of PMUs with channel limits,” presented at the Proc. IEEE Power Eng. Soc. General Meeting, Calgary, Alberta, 2009, pp. 1–4.
  • R. F. Nuqui, and A. G. Phadke, “Phasor measurement unit placement techniques for complete and incomplete observability,” IEEE Trans. Power Del, vol. 20, no. 4, pp. 2381–2388, 2005. DOI:10.1109/TPWRD.2005.855457.
  • C. Rakpenthai, S. Premrudeepreechacharn, S. Uatrongjit, and N. R. Watson, “An optimal PMU placement method against measurement loss and branch outage,” IEEE Trans. Power Del., vol. 22, no. 1, pp. 101–107, 2007.
  • S. P. Singh, and S. P. Singh, “Optimal cost wide area measurement system incorporating communication infrastructure,” IET Gener. Transm. Distrib., vol. 11, no. 11, pp. 2814–2821, 2017. DOI:10.1049/iet-gtd.2016.1983.
  • M. Saha, J. Izykowski, and E. Rosolowski, Fault Location on Power Networks. London, UK: Springer, 2010.
  • L. Kai-Ping, L. Chih-Wen, Y. Chi-Shan, and J. Joe-Air, “Transmission network fault location observability with minimal PMU placement,” IEEE Trans. Power Deliv., vol. 21, no. 3, pp. 1128–1136, 2006. DOI:10.1109/TPWRD.2005.858806.
  • S. P. Pokharel, and S. Brahma, “Optimal PMU placement for fault location in a power system,” presented at the Proceedings of the 41st North American Power Symposium, Starkville, MI, Oct. 4–6 2009, pp. 1–5.
  • B. Rajasekhar, A. Kumar Chandel, and B. Vedik, “Differential evolution based optimal PMU placement for fault observability of power system,” presented at the Students Conference on Engineering and Systems (SCES), Allahabad, India, Apr. 12–14, 2013.
  • S. S. Geramian, H. A. Abyane, and K. Mazlumi, “Determination of optimal PMU placement for fault location using genetic algorithm,” Electr. Utility Deregulation Restruct. Power Technol., vol. 30, pp. 134–139, 2008.
  • T. A. Alexopoulos, N. M. Manousakis, and G. N. Korres, “Fault location observability using phasor measurements units via semidefinite programming,” IEEE Access, vol. 4, pp. 5187–5195, 2016.
  • R. Kavasseri, and, and S. K. Srinivasan, “Joint placement of phasor and conventional power flow measurements for fault observability of power systems,” IET Generat. Transmiss. Distrib., vol. 5, no. 10, pp. 1019–1024, 2011. DOI:10.1049/iet-gtd.2010.0791.
  • E. M. T. Hendrix, and B. Toth, Introduction to Nonlinear and Global Optimization. New York: Springer, 2010.
  • K. Deep, K.-P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic algorithm for solving integer and mixed integer optimization problems,” App. Math. Comput., vol. 212, no. 2, pp. 505–518, 2009. DOI:10.1016/j.amc.2009.02.044.
  • W.-H. Wu, and Lin, C.-Y. “Hybrid-coded crossover for binary-coded genetic algorithms in constrained optimization,” Eng. Optimiz., vol. 36, no. 1, pp. 26–46, 2004.
  • G. Koulinas, K. Lazaros, and K. Anagnostopoulos, “A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem,” Inform. Sci., vol. 277, pp. 680–693, 2014. DOI:10.1016/j.ins.2014.02.155.
  • T. Gonen, Modern Power System Analysis. Boca Raton, FL: Taylor & Francis Group, LLC, 2013.
  • K. A. Clements, “Observability methods and optimal meter placement,” Int. J. Electr. Power Energy Syst., vol. 12, no. 2, pp. 88–93, 1990. DOI:10.1016/0142-0615(90)90004-U.
  • L. A. Wolsey, and G. L. Nemhauser, Integer and Combinatorial Optimization. New York: John Willey and Sons, 1999.
  • S. P. Bradley, A. C. Hanx, and T. L. Magnanti, Applied Mathematical Programming. Boston, MA: Addison-Wesley, 1977.
  • J. W. Chinneck, Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods (International Series in Operations Research & Management Science). New York: Springer, 2008.
  • http://www.gurobi.com/resources/.[Online].
  • J. Nocedal, and S. J. Wright, Numerical Optimization. New York: Springer Science + Business Media, LLC, 2006.
  • D. G. Luenberger, and Y. Yingue, Linear and Nonlinear Programming. 3nd edn. New York: Springer, 2008.
  • L. T. Biegler, Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. Philadelphia: SIAM, 2010.
  • E. Polac, “Optimization: Algorithms and consistent approximations,” Appl. Math. Sci. vol. 124. New York: Springer, 1997.
  • K. P. Chong, and H. Z. Stanislaw, An Introduction to Optimization. New York: John Willey and Sons, 2001.
  • T. H. Cormen, and C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. London, UK: The MIT Press, 2009.
  • Optimization Toolbox for Use with MATLAB® [Online]. User’s Guide for Mathwork.
  • Berthold, T. Gamrath, G. Gleixner, Achterberg, and T. “SCIP: Solving constraint integer programs,” Math. Program. Comput., vol. 1, no. 1, pp. 1–41, 2009. DOI:10.1007/s12532-008-0001-1.
  • Version 7.1.0.53. [Online]. Available: https://www.mosek.com/MOSEK.
  • Global Optimization Toolbox for Use with MATLAB®. [Online]. User’s Guide for Mathwork.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.