159
Views
10
CrossRef citations to date
0
Altmetric
Articles

Comprehensive Power System Stability Improvement with ROCOF Controlled SMES

ORCID Icon &
Pages 162-173 | Received 20 Sep 2018, Accepted 07 Feb 2020, Published online: 15 Apr 2020

References

  • F. Blaabjerg and D. M. Ionel, Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®. Boca Raton, FL, USA: CRC Press, 2017.
  • H. Jiang and C. Zhang, “A method of boosting transient stability of wind farm connected power system using s magnetic energy storage unit,” IEEE Trans. Appl. Superconductivity, vol. 29, no. 2, pp. 1–5, 2019. DOI: 10.1109/TASC.2019.2892291.
  • Y. Mitani, K. Tsuji and Y. Murakami, “Application of superconducting magnet energy storage to improve power system dynamic performance,” IEEE Trans. Power Syst., vol. 3, no. 4, pp. 1418–1425, 1988. DOI: 10.1109/59.192948.
  • H. Ahsan and M. D. Mufti, “Distributed storage approach versus singular storage approach: A dynamic stability evaluation,” Int. J. Power Energy Syst., vol. 39, no. 1, pp. 1–9, 2019.
  • M. H. Ali, B. Wu and R. A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 38–47, 2010. DOI: 10.1109/TSTE.2010.2044901.
  • S.-S. Chen, L. Wang, W.-J. Lee and Z. Chen, “Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit,” IET Renew. Power Gener., vol. 3, no. 1, pp. 23–38, 2009. DOI: 10.1049/iet-rpg:20070117.
  • F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems,” 2018 Power Systems Computation Conference (PSCC). IEEE, pp. 1–25, 2018. DOI: 10.23919/PSCC.2018.8450880.
  • H. Pulgar-Painemal, Y. Wang and H. Silva-Saravia, “On inertia distribution, inter-area oscillations and location of electronically-interfaced resources,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 995–1003, 2017. DOI: 10.1109/TPWRS.2017.2688921.
  • M. H. Ali, M. Park, I.-K. Yu, T. Murata and J. Tamura, “Improvement of wind-generator stability by fuzzy-logic-controlled smes,” IEEE Trans. Industry Appl., vol. 45, no. 3, pp. 1045–1051, 2009. DOI: 10.1109/TIA.2009.2018901.
  • B. Pal, “Robust pole placement versus root-locus approach in the context of damping interarea oscillations in power systems,” IEE Proc. Gener. Trans. Distrib., vol. 149, no. 6, pp. 739–745, 2002. DOI: 10.1049/ip-gtd:20020659.
  • T. Kinjo, T. Senjyu, N. Urasaki and H. Fujita, “Terminal-voltage and output-power regulation of wind-turbine generator by series and parallel compensation using SMES,” IEE Proc. Gener. Trans. Distrib., vol. 153, no. 3, pp. 276–282, 2006. DOI: 10.1049/ip-gtd:20045189.
  • A. Ortega and F. Milano, “Generalized model of vsc-based energy storage systems for transient stability analysis,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3369–3380, 2015. DOI: 10.1109/TPWRS.2015.2496217.
  • H. Ahsan, et al., “Modeling and simulation of a superconducting magnetic energy storage based multi-machine power system for transient stability study,” 2017 6th International Conference on Computer Applications in Electrical Engineering-Recent Advances (CERA), in IEEE, pp. 347–352, 2017. DOI: 10.1109/CERA.2017.8343353.
  • S. Dechanupaprittha, K. Hongesombut, M. Watanabe, Y. Mitani and I. Ngamroo, “Stabilization of tie-line power flow by robust SMES controller for interconnected power system with wind farms,” IEEE Trans. Appl. Superconduct., vol. 17, no. 2, pp. 2365–2368, 2007. DOI: 10.1109/TASC.2007.897846.
  • H. Shirahama, Y. Sakurai, Y. Matsuda, Y. Ishigaki and K. Murai, “Instantaneous control method with a gto converter for active and reactive powers in superconducting magnetic energy storage,” IEEE Trans. Power Electronics, vol. 9, no. 1, pp. 1–6, 1994. DOI: 10.1109/63.285487.
  • Q. Jiang and M. Conlon, “The power regulation of a PWM type superconducting magnetic energy storage unit,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 168–174, 1996. DOI: 10.1109/60.486592.
  • H. Ahsan and M. D. Mufti, “Discrete predictive control of a flywheel energy storage for transient stability augmentation,” Int. J. Power Energy Syst., vol. 39, no. 4, pp. 1–7, 2019. DOI: 10.2316/J.2019.203-0164.
  • H. Silva-Saravia, H. Pulgar-Painemal and J. M. Mauricio, “Flywheel energy storage model, control and location for improving stability: The Chilean case,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3111–3119, 2016. DOI: 10.1109/TPWRS.2016.2624290.
  • B. C. Pal, A. H. Coonick, I. M. Jaimoukha and H. El-Zobaidi, “A linear matrix inequality approach to robust damping control design in power systems with superconducting magnetic energy storage device,” IEEE Trans. Power Syst., vol. 15, no. 1, pp. 356–362, 2000. DOI: 10.1109/59.852144.
  • H. Rezaie, S. M. Moosavy Chashmi, M. Mirsalim and H. Rastegar, “Enhancing LVRT capability and smoothing power fluctuations of a DFIG-based wind farm in a dc microgrid,” Electric Power Components Syst., vol. 45, no. 10, pp. 1080–1090, 2017. DOI: 10.1080/15325008.2017.1318979.
  • H. Ahsan et al., “Modeling and simulation of an energy storage based multi-machine power system for transient stability study,” 2017 IEEE Conference on Energy Conversion (CENCON), in IEEE, pp. 78–83, 2017. DOI: 10.1109/CENCON.2017.8262462.
  • M. Rabbani, J. Devotta and S. Elangovan, “Application of simultaneous active and reactive power modulation of smes unit under unequal/spl alpha/-mode for power system stabilization,” IEEE trans. Power syst., vol. 14, no. 2, pp. 547–552, 1999. DOI: 10.1109/59.761879.
  • C.-J. Wu and Y.-S. Lee, “Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations,” IEEE Trans. Energy Conversion, vol. 8, no. 1, pp. 63–70, 1993. DOI: 10.1109/60.207407.
  • G. Xu, L. Xu and J. Morrow, “Power oscillation damping using wind turbines with energy storage systems,” IET Renew. Power Gener., vol. 7, no. 5, pp. 449–457, 2013. DOI: 10.1049/iet-rpg.2012.0019.
  • M. H. Ali, J. Tamura and B. Wu, “SMES strategy to minimize frequency fluctuations of wind generator system,” 2008 34th Annual Conference of IEEE Industrial Electronics, in IEEE, pp. 3382–3387, 2008.
  • Z. Du, Y. Zhang, L. Liu, X. Guan, Y. Ni and F. Wu, “Structure-preserved power-frequency slow dynamics simulation of interconnected ac/dc power systems with AGC consideration,” IET Gener. Transm. Distrib., vol. 1, no. 6, pp. 920–927, 2007. DOI: 10.1049/iet-gtd:20070058.
  • H. Bevrani and T. Hiyama, Intelligent Automatic Generation Control. Boca Raton, FL, USA: CRC press, 2016.
  • H. M. Hasanien and S. Muyeen, “Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms,” IEEE Trans. Sustainable Energy, vol. 3, no. 2, pp. 200–208, 2012. DOI: 10.1109/TSTE.2012.2182784.
  • H. Ahsan and M. D. Mufti, “Dynamic performance improvement of a hybrid multimachine system using a flywheel energy storage system,” Wind Eng., vol. 1, pp. 0309524X19849853, 2019. DOI: 10.1177/0309524X19849853.
  • P. W. Sauer, M. A. Pai and J. H. Chow, Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox. Hoboken, NJ, USA: John Wiley & Sons, 2017.
  • F. Milano, Power System Modelling and Scripting. Berlin, Germany: Springer Science & Business Media, 2010.
  • H. Ahsan and M-u-D. Mufti, “Modelling and stability investigations of an aggregate wind farm–fed multi-machine system,” Wind Eng., vol. 1, pp. 0309524X19862759, 2019. DOI: 10.1177/0309524X19862759.
  • T. Chaiyatham and I. Ngamroo, “Improvement of power system transient stability by pv farm with fuzzy gain scheduling of pid controller,” IEEE Syst. J., vol. 11, no. 3, pp. 1684–1691, 2014. DOI: 10.1109/JSYST.2014.2347393.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.