247
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of Thyristor Bridge-Type Non-Superconducting FCL with Buck Series Charging to Improve the FRT Capability of the DFIG System

, &
Pages 1898-1911 | Received 06 Jul 2019, Accepted 16 Feb 2021, Published online: 05 May 2021

References

  • G. M. Joselin Herbert, S. Iniyan and D. Amutha, “A review of technical issues on the development of wind farms,” Renew. Sustain. Energy Rev., vol. 32, pp. 619–641, 2014. DOI: 10.1016/j.rser.2014.01.055.
  • H. Li and Z. Chen, “Overview of different wind generator systems and their comparisons,” IET Renew. Power Gen., vol. 2, no. 2, pp. 123–138, Jun. 2008. DOI: 10.1049/iet-rpg:20070044.
  • V. T. Phan and H. H. Lee, “Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers,” IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 199–210, Jan. 2012. DOI: 10.1109/TIA.2011.2175883.
  • J. López, E. Gubía, P. Sanchis, X. Roboam and L. Marroyo, “Wind turbines based on doubly fed induction generator under asymmetrical voltage dips,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 321–330, Mar. 2008. DOI: 10.1109/TEC.2007.914317.
  • G. Pannell, D. J. Atkinson and B. Zahawi, “Analytical study of grid-fault response of wind turbine doubly fed induction generator,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1081–1091, Dec. 2010. DOI: 10.1109/TEC.2010.2049494.
  • S. S. Sahoo, K. Chatterjee and P. M. Tripathi, “A coordinated control strategy using supercapacitor energy storage and series dynamic resistor for enhancement of fault ride-through of doubly fed induction generator,” Int. J. Green Energy, vol. 16, no. 8, pp. 615–626, 2019. DOI: 10.1080/15435075.2019.1602531.
  • M. S. Alam and M. A. Y. Abido, “Fault ride through capability enhancement of a large-scale PMSG wind system with bridge type fault current limiters,” Adv. Electr. Comput. Eng., vol. 18, no. 1, pp. 43–50, 2018. DOI: 10.4316/AECE.2018.01006.
  • M. Alam, M. Abido, A. Hussein and I. El-Amin, “Fault ride through capability augmentation of a DFIG-based wind integrated VSC-HVDC system with non-superconducting fault current limiter,” Sustainability, vol. 11, no. 5, pp. 1232–1223, 2019. DOI: 10.3390/su11051232.
  • K. E. Okedu, S. M. Muyeen, R. Takahashi and J. Tamura, “Wind farms fault ride through using DFIG with new protection scheme,” IEEE Trans. Sustain. Energy, vol. 3, no. 2, pp. 242–254, Apr. 2012. DOI: 10.1109/TSTE.2011.2175756.
  • M. Firouzi and G. B. Gharehpetian, “Improving fault ride-through capability of fixed-speed wind turbine by using bridge-type fault current limiter,” IEEE Trans. Energy Convers., vol. 28, no. 2, pp. 361–369, Jun. 2013. DOI: 10.1109/TEC.2013.2248366.
  • M. E. Elshiekh, D. E. A. Mansour, and A. M. Azmy, “Improving fault ride-through capability of DFIG-based wind turbine using superconducting fault current limiter,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 5601204, Jun. 2013. DOI: 10.1109/TASC.2012.2235132.
  • G. Rashid and M. H. Ali, “A modified bridge-type fault current limiter for fault ride-through capacity enhancement of fixed speed wind generator,” IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 527–534, Jun. 2014. DOI: 10.1109/TEC.2014.2304414.
  • I. Ngamroo and T. Karaipoom, “Cooperative control of SFCL and SMES for enhancing fault ride through capability and smoothing power fluctuation of DFIG wind farm,” IEEE Trans. Appl. Supercond., vol. 24, no. 5, pp. 1–4, Oct. 2014. DOI: 10.1109/TASC.2014.2340445.
  • G. Rashid and M. H. Ali, “Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter,” IEEE Trans. Energy Convers., vol. 30, no. 3, pp. 939–947, Sep. 2015. DOI: 10.1109/TEC.2015.2400220.
  • M. Firouzi, G. B. Gharehpetian and B. Mozafari, “Improvement of power system stability by using new switching technique in bridge-type fault current limiter,” Electr. Power Compon. Syst., vol. 43, no. 2, pp. 234–244, 2015. DOI: 10.1080/15325008.2014.977463.
  • A. Jalilian, S. B. Naderi, M. Negnevitsky, M. T. Hagh and K. M. Muttaqi, “Controllable DC-link fault current limiter augmentation with DC chopper to improve fault ride-through of DFIG,” IET Renew. Power Gen., vol. 11, no. 2, pp. 313–324, 2017. DOI: 10.1049/iet-rpg.2016.0146.
  • H. Rezaie, S. M. Moosavy Chashmi, M. Mirsalim and H. Rastegar, “Enhancing LVRT capability and smoothing power fluctuations of a DFIG-based wind farm in a DC microgrid,” Electr. Power Compon. Syst., vol. 45, no. 10, pp. 1080–1090, 2017. DOI: 10.1080/15325008.2017.1318979.
  • M. Alam, M. Abido and I. El-Amin, “Fault current limiters in power systems: a comprehensive review,” Energies, vol. 11, no. 5, p. 1025, 2018. DOI: 10.3390/en11051025.
  • L. A. Kojovic, S. P. Hassler, K. L. Leix, C. W. Williams and E. E. Baker, “Comparative analysis of expulsion and current-limiting fuse operation in distribution systems for improved power quality and protection,” IEEE Trans. Power Del., vol. 13, no. 3, pp. 863–869, Jul. 1998. DOI: 10.1109/61.686985.
  • C. S. Chang and P. C. Loh, “Integration of fault current limiters on power systems for voltage quality improvement,” Electr. Power Syst. Res., vol. 57, no. 2, pp. 83–92, 2001. DOI: 10.1016/S0378-7796(01)00095-5.
  • A. Abramovitz and K. M. Smedley, “Survey of solid-state fault current limiters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2770–2782, Jun. 2012. DOI: 10.1109/TPEL.2011.2174804.
  • M. T. Hagh and M. Abapour, “Nonsuperconducting fault current limiter with controlling the magnitudes of fault currents,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 613–619, Mar. 2009. DOI: 10.1109/TPEL.2008.2004496.
  • M. Wang, W. Xu, J. Hongjie and X. Yu, “A new control system to strengthen the LVRT capacity of DFIG based on both crowbar and DC chopper circuits,” IEEE Innov. Smart Grid Tech. Asia (ISGT Asia), pp. 1–6, May 2012. DOI: 10.1109/ISGT-Asia.2012.6303234.
  • L. G. Meegahapola, T. Littler and D. Flynn, “Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults,” IEEE Trans. Sustain. Energy, vol. 1, no. 3, pp. 152–162, Oct. 2010. DOI: 10.1109/TSTE.2010.2058133.
  • J. Jackson John, M. Francis and J. Jin-Woo, “Doubly-fed induction generator based wind turbines: a comprehensive review of fault ride-through strategies,” Renew. Sust. Energ. Rev., vol. 45, pp. 447–467, 2015. DOI: 10.1016/j.rser.2015.01.064.
  • J. Yang, J. E. Fletcher and J. O’Reilly, “A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 422–432, Jun. 2010. DOI: 10.1109/TEC.2009.2037970.
  • M. Emrad Hossain, “A non-linear controller based new bridge type fault current limiter for transient stability enhancement of DFIG based wind farm,” Electr. Power Syst. Res., vol. 152, pp. 466–484, 2017. DOI: 10.1016/j.epsr.2017.07.033.
  • C. Zhao, et al., “Development and test of a superconducting fault current limiter-magnetic energy storage (SFCL-MES) system,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 2014–2017, Jun. 2007. DOI: 10.1109/TASC.2007.899825.
  • M. Abdolkarimzadeh, M. Nazari-Heris, M. Abapour and M. Sabahi, “A bridge-type fault current limiter for energy management of AC/DC microgrids,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9043–9050, Dec. 2017. DOI: 10.1109/TPEL.2017.2655106.
  • H. J. Boenig and D. A. Paice, “Fault current limiter using a superconducting coil,” IEEE Trans. Magn., vol. 19, no. 3, pp. 1051–1053, May 1983. DOI: 10.1109/TMAG.1983.1062396.
  • T. Nomura, M. Yamaguchi, S. Fukui, K. Yokoyama, T. Satoh and K. Usui, “Single DC reactor type fault current limiter for 6.6 kV power system,” IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 2090–2093, Mar. 2001. DOI: 10.1109/77.920268.
  • H. Nourmohamadi, M. Nazari-Heris, M. Sabahi and M. Abapour, “A novel structure for bridge-type fault current limiter: capacitor-based nonsuperconducting FCL,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3044–3051, Apr. 2018. DOI: 10.1109/TPEL.2017.2710018.
  • M. Nazari-Heris, H. Nourmohamadi, M. Abapour and M. Sabahi, “Multilevel nonsuperconducting fault current limiter: analysis and practical feasibility,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6059–6068, Aug. 2017. DOI: 10.1109/TPEL.2016.2618915.
  • S. Chen, P. Li, R. Ball, J. de Palma and B. Lehman, “Analysis of a switched impedance transformer-type nonsuperconducting fault current limiter,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1925–1936, Apr. 2015. DOI: 10.1109/TPEL.2014.2329091.
  • J. G. Slootweg, H. Polinder and W. L. Kling, “Representing wind turbine electrical generating systems in fundamental frequency simulations,” IEEE Trans. Energy Convers., vol. 18, no. 4, pp. 516–524, Dec. 2003. DOI: 10.1109/TEC.2003.816593.
  • G. Abad, J. López, M. A. Rodríguez and L. Marroyo, and G. Iwanski, Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation. John Wiley & Sons, Inc., 2011.
  • L. Xu and W. Cheng, “Torque and reactive power control of a doubly fed induction machine by position sensorless scheme,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 636–642, 1995. DOI: 10.1109/28.382126.
  • N. N. K. Swami, and B. Singh, “Experimental implementation of doubly fed induction generator-based standalone wind energy conversion system,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3332–3339, Jul. 2016. DOI: 10.1109/TIA.2016.2542783.
  • Naidu, N., K. Swami and B. Singh, “Doubly fed induction generator for wind energy conversion systems with integrated active filter capabilities,” IEEE Trans. Ind. Inf., vol. 11, no. 4, pp. 923–933, Aug. 2015. DOI: 10.1109/TII.2015.2446767.
  • M. Tarafdar Hagh and M. Abapour, “DC reactor type transformer inrush current limiter,” IET Electr. Power Appl., vol. 1, no. 5, pp. 808–814, Sep. 2007. DOI: 10.1049/iet-epa:20060511.
  • T. Satoh, et al., “Three-phase fault current limiter with one DC S/N transition element,” IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 2398–2401, Mar. 2001. DOI: 10.1109/77.920345.
  • N. Mohan, W. P. Robbins and T. M. Undeland, Power Electronics: Converters, Applications, and Design, 3rd ed. Hoboken, NJ: Wiley, 2007.
  • Manitoba. Users Guide PSCAD 4.2.1. Manitoba-HVDC Research Centre, Canada, 4.2.1 edition, 2008.
  • D. Sarasij and P. Ramesh, Indian Wind Grid Code. Technical Report PRDC/2009-2010/C-WET/831. India: Center for Energy Technology, 2009.
  • L. Meegahapola, M. Datta, I. Nutkani and J. Conroy, “Role of fault ride-through strategies for power grids with 100% power electronic-interfaced distributed renewable energy resources,” WIREs Energy Environ., vol. 7, no. 4, pp. e292, 2018. DOI: 10.1002/wene.292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.