152
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Performance Analysis of the Dual-Setting Directional Overcurrent Relays-Based Protection Considering the Impact of Curve Types and Fault Location

, , , &
Pages 706-723 | Received 24 May 2022, Accepted 15 Feb 2023, Published online: 28 Feb 2023

References

  • A. Yazdaninejadi, D. Nazarpour, and S. Golshannavaz, “Dual-setting directional over-current relays: An optimal coordination in multiple source meshed distribution networks,” Int. J. Electr. Power Energy Syst., vol. 86, pp. 163–176, 2017.
  • M. Shih, C. Salazar, and A. Enriquez, “Adaptive directional overcurrent relay coordination using Ant colony optimization,” IET Gen. Transm. Distrib., vol. 9, no. 14, pp. 2040–2049, 2015. DOI: 10.1049/iet-gtd.2015.0394.
  • A. Mahari and H. Seyedi, “An analytical approach for optimal coordination of overcurrent relays,” IET Gen. Transm. Distrib., vol. 7, pp. 674–680, 2013. DOI: 10.1049/iet-gtd.2012.0721.
  • S. S. Gokhale and V. S. Kale, “Exploring the fallacies in the overcurrent relay coordination optimization problem with simple cases,” presented at the DELCON IEEE Conf., New Delhi, 2022.
  • H. H. Zeineldin, H. M. Sharaf, D. K. Ibrahim, and E. E.-D. A. El-Zahab, “Optimal protection coordination for meshed distribution systems with DG using dual setting directional over-current relays,” IEEE Trans. Smart Grid, vol. 6, pp. 115–123, 2014. DOI: 10.1109/TSG.2014.2357813.
  • Siemens Global, “Multifunction protection – SIPROTEC 7SJ62j Overcurrent and motor protection Siemens Global.” [Online]. Available: https://new.siemens.com/global/en/products/energy/energy-automationand-smartgrid/protection-relays-and-control/siprotec-4/overcurrentand-motor-protection/multifunction-protectionsiprotec-7sj62.html. Accessed: May 22, 2022.
  • A. S. Noghabi, H. R. Mashhadi, and J. Sadeh, “Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming,” IEEE Trans. Power Deliv., vol. 25, no. 3, pp. 1348–1354, 2010. DOI: 10.1109/TPWRD.2010.2041560.
  • Y. Damchi, J. Sadeh, and H. R. Mashhadi, “Applying hybrid interval linear programming and genetic algorithm to coordinate distance and directional over-current relays,” Electr. Power Compon. Syst., vol. 44, no. 17, pp. 1935–1946, 2016. DOI: 10.1080/15325008.2016.1199068.
  • S. T. P. Srinivas and K. S. Swarup, “A hybrid GA — Interval linear programming implementation for microgrid relay coordination considering different fault locations,” presented at the 2017 7th International Conference on Power Systems (ICPS), Pune, India, 2017, pp. 785–790. DOI: 10.1109/ICPES.2017.8387396.
  • I. Evkay, S. Ashraf, M. Baysal, U. S. Selamogullari, and O. Hasan, “Single dual setting directional over-current relay based line protection logic for distributed generation integrated power systems,” presented at the 2020 2nd Global Power, Energy and Communication Conference (GPECOM), Izmir, Turkey, 2020, pp. 245–250. DOI: 10.1109/GPECOM49333.2020.9247868.
  • H. M. Sharaf, H. H. Zeineldin, D. K. Ibrahim, and E. L. Essam, “A proposed coordination strategy for meshed distribution systems with DG considering user-defined characteristics of directional inverse time overcurrent relays,” Int. J. Electr. Power Energy Syst., vol. 65, pp. 49–58, 2015. DOI: 10.1016/j.ijepes.2014.09.028.
  • D. S. Alkaran, M. R. Vatani, M. J. Sanjari, G. B. Gharehpetian, and M. S. Naderi, “Optimal overcurrent relay coordination in interconnected networks by using fuzzy-based GA method,” IEEE Trans. Smart Grid, vol. 9, pp. 3091–3101, 2016. DOI: 10.1109/TSG.2016.2626393.
  • A. Darabi, M. Bagheri, and G. B. Gharehpetian, “Dual feasible direction-finding nonlinear programming combined with metaheuristic approaches for exact overcurrent relay coordination,” Int. J. Electr. Power Energy Syst., vol. 114, pp. 105420, 2020. DOI: 10.1016/j.ijepes.2019.105420.
  • M. Ezzeddine and R. Kaczmarek, “A novel method for optimal coordination of directional overcurrent relays considering their available discrete settings and several operation characteristics,” Electr. Power Syst. Res., vol. 81, no. 7, pp. 1475–1481, 2011. DOI: 10.1016/j.epsr.2011.02.014.
  • S. T. P. Srinivas and K. S. Swarup, “A new mixed integer linear programming formulation for protection relay coordination using disjunctive inequalities,” IEEE Power Energy Technol. Syst. J., vol. 6, pp. 104–112, 2019. DOI: 10.1109/JPETS.2019.2907320.
  • Y. Damchi, M. Dolatabadi, H. R. Mashhadi, and J. Sadeh, “MILP approach for optimal coordination of directional overcurrent relays in interconnected power systems,” Electr. Power Syst. Res., vol. 158, pp. 267–274, 2018. DOI: 10.1016/j.epsr.2018.01.015.
  • A. A. Kida and L. A. Gallego, “Optimal coordination of overcurrent relays using mixed integer linear programming,” IEEE Lat. Am. Trans, vol. 14, no. 3, pp. 1289–1295, 2016. DOI: 10.1109/TLA.2016.7459611.
  • Easun Reyrolle Ltd. ARGUS2, “Numerical directional overcurrent protection relay.” [Online]. Available: http://www.easunreyrolle.com/product.php. Accessed: May 2022.
  • Z. Yang et al., “A structural transmission cost allocation scheme based on capacity usage identification,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2876–2884, 2015. DOI: 10.1109/TPWRS.2015.2464108.
  • H. M. Sharaf, H. H. Zeineldin, and E. El-Saadany, “Protection coordination for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays,” IEEE Trans. Smart Grid, vol. 9, pp. 143–151, 2018. DOI: 10.1109/TSG.2016.2546961.
  • A. Yazdaninejadi, S. Golshannavaz, D. Nazarpour, S. Teimourzadeh, and F. Aminifar, “Dual-setting directional overcurrent relays for protecting automated distribution networks,” IEEE Trans. Ind. Inform., vol. 15, pp. 730–740, 2018. DOI: 10.1109/TII.2018.2821175.
  • H. C. Kiliçkiran et al., “Power system protection with digital overcurrent relays: A review of non-standard characteristics,” Electr. Power Syst. Res., vol. 164, pp. 89–102, 2018. DOI: 10.1016/j.epsr.2018.07.008.
  • R. Tiwari, R. K. Singh, and N. K. Choudhary, “Coordination of dual setting overcurrent relays in microgrid with optimally determined relay characteristics for dual operating modes,” Prot. Control Mod. Power Syst., vol. 7, no. 1, pp. 1–18, 2022.
  • A. Yazdaninejadi, D. Nazarpour, and V. Talavat, “Optimal coordination of dual-setting directional over-current relays in multi-source meshed active distribution networks considering transient stability,” IET Gener. Transm. Distrib., vol. 13, pp. 157–170, 2018. DOI: 10.1049/iet-gtd.2018.5431.
  • E. Sorrentino and J. V. Rodríguez, “Effects of the curve type of overcurrent functions and the location of analyzed faults on the optimal coordination of directional overcurrent protections,” Comput. Electr. Eng., vol. 88, pp. 106864, 2020. DOI: 10.1016/j.compeleceng.2020.106864.
  • R. M. Chabanloo, H. A. Abyaneh, S. S. H. Kamangar, and F. Razavi, “Optimal combined overcurrent and distance relays coordination incorporating intelligent overcurrent relays characteristic selection,” IEEE Trans. Power Deliv., vol. 26, no. 3, pp. 1381–1391, 2011. DOI: 10.1109/TPWRD.2010.2082574.
  • International Electrotechnical Commission (IEC), “3: Single input energizing quantity measuring relays with dependent or independent time, 60255-3.” IEC Electrical, Geneva, Switzerland, 1989.
  • M. N. Alam, “Overcurrent protection of AC microgrids using mixed characteristic curves of relays,” Comput. Electr. Eng., vol. 74, pp. 74–88, 2019. DOI: 10.1016/j.compeleceng.2019.01.003.
  • S. Khanbabapour and M. E. H. Golshan, “Synchronous DG planning for simultaneous improvement of technical, overcurrent, and timely anti-islanding protection indices of the network to preserve protection coordination,” IEEE Trans. Power Deliv., vol. 32, pp. 474–483, 2016. DOI: 10.1109/TPWRD.2016.2538799.
  • H. Yang, F. Wen, and G. Ledwich, “Optimal coordination of overcurrent relays in distribution systems with distributed generators based on differential evolution algorithm,” Int. Trans. Electr. Energy Syst., vol. 23, pp. 1–12, 2013. DOI: 10.1002/etep.635.
  • Illinois Center for a Smarter Electric Grid (ICSEG), “IEEE 30-Bus System - Illinois Center for a Smarter Electric Grid (ICSEG).” [Online]. Available: https://icseg.iti.illinois.edu/ieee-30-bus-system/. Accessed: May 22, 2022.
  • J. A. X. Prabhu, S. Sharma, M. Nataraj, and D. P. Tripathi, “Design of electrical system based on load flow analysis using ETAP for IEC projects,” presented at the 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India, 2016, pp. 1–6. DOI: 10.1109/ICPES.2016.7584103.
  • A. Soroudi, “Introduction to programming in GAMS,” in Power System Optimization Modeling in GAMS, 2nd ed., Dublin: Springer, 2017, pp. 1–32.
  • GAMS Development Corporation, “GAMS - cutting edge modeling.” [Online]. Available: https://www.gams.com/. Accessed: May 22, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.